Datasets:
lmqg
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
qg_tweetqa / qg_tweetqa.py
asahi417's picture
Update qg_tweetqa.py
2d3078e
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_VERSION = "3.0.0"
_NAME = "qg_tweetqa"
_CITATION = """
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
"""
_DESCRIPTION = """Question generation dataset based on [TweetQA](https://huggingface.co/datasets/tweet_qa)."""
_URL = "https://huggingface.co/datasets/lmqg/qg_tweetqa/resolve/main/data/processed"
_URLS = {
'train': f'{_URL}/train.jsonl',
'test': f'{_URL}/test.jsonl',
'validation': f'{_URL}/validation.jsonl'
}
class QGTweetQAConfig(datasets.BuilderConfig):
"""BuilderConfig"""
def __init__(self, **kwargs):
"""BuilderConfig.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(QGTweetQAConfig, self).__init__(**kwargs)
class QGTweetQA(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
QGTweetQAConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"answer": datasets.Value("string"),
"paragraph_question": datasets.Value("string"),
"question": datasets.Value("string"),
"paragraph": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://github.com/asahi417/lm-question-generation"
)
def _split_generators(self, dl_manager):
downloaded_file = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_file["validation"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file["test"]}),
]
def _generate_examples(self, filepath):
_key = 0
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
_list = f.read().split('\n')
if _list[-1] == '':
_list = _list[:-1]
for i in _list:
data = json.loads(i)
yield _key, data
_key += 1