Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
question-generation
License:
import json | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_VERSION = "1.0.1" | |
_CITATION = """ | |
TBA | |
""" | |
_DESCRIPTION = """[SubjQA](https://github.com/megagonlabs/SubjQA) dataset for question generation (QG) task.""" | |
_URL = 'https://huggingface.co/datasets/lmqg/qg_subjqa/raw/main/data/processed' | |
_DOMAINS = ["books", "electronics", "grocery", "movies", "restaurants", "tripadvisor"] | |
class QGSubjQAConfig(datasets.BuilderConfig): | |
"""BuilderConfig for SquadQG""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for SquadQG. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(QGSubjQAConfig, self).__init__(**kwargs) | |
class QGSubjQA(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [QGSubjQAConfig(name="all", version=datasets.Version(_VERSION), description="SubjQA from all domain of `{}`.")] | |
BUILDER_CONFIGS += [QGSubjQAConfig(name=i, version=datasets.Version(_VERSION), description=f"SubjQA from domain of `{i}`.") for i in _DOMAINS] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"answer": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"sentence": datasets.Value("string"), | |
"paragraph": datasets.Value("string"), | |
"sentence_answer": datasets.Value("string"), | |
"paragraph_answer": datasets.Value("string"), | |
"paragraph_sentence": datasets.Value("string"), | |
"paragraph_id": datasets.Value("string"), | |
"question_subj_level": datasets.Value("int32"), | |
"answer_subj_level": datasets.Value("int32"), | |
"domain": datasets.Value("string"), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/asahi417/lm-question-generation" | |
) | |
def _split_generators(self, dl_manager): | |
if self.config.name == 'all': | |
downloaded_file = dl_manager.download_and_extract({ | |
'train': [f"{_URL}/{i}.train.jsonl" for i in _DOMAINS], | |
'dev': [f"{_URL}/{i}.dev.jsonl" for i in _DOMAINS], | |
'test': [f"{_URL}/{i}.test.jsonl" for i in _DOMAINS] | |
}) | |
else: | |
downloaded_file = dl_manager.download_and_extract({ | |
'train': [f"{_URL}/{self.config.name}.train.jsonl"], | |
'dev': [f"{_URL}/{self.config.name}.dev.jsonl"], | |
'test': [f"{_URL}/{self.config.name}.test.jsonl"] | |
}) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_file["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": downloaded_file["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": downloaded_file["test"]}) | |
] | |
def _generate_examples(self, filepaths): | |
_key = 0 | |
for filepath in filepaths: | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
_list = f.read().split('\n') | |
if _list[-1] == '': | |
_list = _list[:-1] | |
for i in _list: | |
data = json.loads(i) | |
yield _key, data | |
_key += 1 | |