Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
Russian
Size:
10K<n<100K
ArXiv:
Tags:
question-generation
License:
update
Browse files- .gitattributes +3 -0
- README.md +0 -0
- data/processed/test.jsonl +3 -0
- data/processed/train.jsonl +3 -0
- data/processed/validation.jsonl +3 -0
- process.py +140 -0
- qg_ruquad.py +65 -0
.gitattributes
CHANGED
@@ -35,3 +35,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
36 |
*.ogg filter=lfs diff=lfs merge=lfs -text
|
37 |
*.wav filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
35 |
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
36 |
*.ogg filter=lfs diff=lfs merge=lfs -text
|
37 |
*.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
+
data/processed/test.jsonl filter=lfs diff=lfs merge=lfs -text
|
39 |
+
data/processed/train.jsonl filter=lfs diff=lfs merge=lfs -text
|
40 |
+
data/processed/validation.jsonl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
File without changes
|
data/processed/test.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:876be9e86d6ad9fc9eb6172c62b6d26f5655d7f25e4d4d8f3839feb772c33e40
|
3 |
+
size 323354268
|
data/processed/train.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ec827524988846ec8060d3f571c0b186ff817210bd3f5bdbbd68634385cd71a
|
3 |
+
size 631464161
|
data/processed/validation.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d9c505701981f912dbc64c1100d7fc2299a603c90d8dd739e7bc065ce36bfec
|
3 |
+
size 70239570
|
process.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
gsplit -l 1500 -d --additional-suffix=.jsonl test.jsonl test
|
3 |
+
gsplit -l 1500 -d --additional-suffix=.jsonl train.jsonl train
|
4 |
+
gsplit -l 1500 -d --additional-suffix=.jsonl validation.jsonl validation
|
5 |
+
rm -rf test.jsonl
|
6 |
+
rm -rf train.jsonl
|
7 |
+
rm -rf validation.jsonl
|
8 |
+
"""
|
9 |
+
import json
|
10 |
+
import os
|
11 |
+
import re
|
12 |
+
import spacy
|
13 |
+
from random import seed, shuffle
|
14 |
+
from tqdm import tqdm
|
15 |
+
from datasets import load_dataset
|
16 |
+
|
17 |
+
DATASET_NAME = "sberquad"
|
18 |
+
DATASET_TYPES = None
|
19 |
+
HIGHLIGHT_TOKEN = '<hl>'
|
20 |
+
GENERATE_TEST_SPLIT = False
|
21 |
+
SPLITTER = spacy.load('ru_core_news_sm')
|
22 |
+
|
23 |
+
|
24 |
+
def get_sentence(document: str): return [str(sent) for sent in SPLITTER(document).sents]
|
25 |
+
|
26 |
+
|
27 |
+
def process_single_data(question: str, paragraph: str, answer: str):
|
28 |
+
""" Convert single raw json data into QG format """
|
29 |
+
if paragraph.find(answer) == -1:
|
30 |
+
answer = answer.lower()
|
31 |
+
if paragraph.find(answer) == -1:
|
32 |
+
paragraph = paragraph.lower()
|
33 |
+
if paragraph.find(answer) == -1:
|
34 |
+
answer = re.sub(r'\W+\Z', '', answer)
|
35 |
+
if paragraph.find(answer) == -1:
|
36 |
+
answer = re.sub(r'\A\W+', '', answer)
|
37 |
+
example = {'question': question, 'paragraph': paragraph, 'answer': answer}
|
38 |
+
start = example['paragraph'].find(example['answer'])
|
39 |
+
end = start + len(answer)
|
40 |
+
if paragraph[start:end] != answer:
|
41 |
+
print()
|
42 |
+
print(answer)
|
43 |
+
print(paragraph)
|
44 |
+
print()
|
45 |
+
return None
|
46 |
+
# get sentence
|
47 |
+
before_tmp = get_sentence(example['paragraph'][:start])
|
48 |
+
if len(before_tmp) == 0:
|
49 |
+
before = ''
|
50 |
+
before_sentence = ''
|
51 |
+
else:
|
52 |
+
if before_tmp[-1].endswith('.'):
|
53 |
+
before = ' '.join(before_tmp)
|
54 |
+
before_sentence = ''
|
55 |
+
else:
|
56 |
+
before = ' '.join(before_tmp[:-1])
|
57 |
+
before_sentence = before_tmp[-1]
|
58 |
+
before_sentence = before_sentence if before_sentence.endswith(' ') else f'{before_sentence} '
|
59 |
+
after_tmp = get_sentence(example['paragraph'][start + len(example['answer']):])
|
60 |
+
if len(after_tmp) == 0:
|
61 |
+
after = ''
|
62 |
+
after_sentence = ''
|
63 |
+
else:
|
64 |
+
after = ' '.join(after_tmp[1:])
|
65 |
+
after_sentence = after_tmp[0]
|
66 |
+
after_sentence = after_sentence if after_sentence.startswith(' ') else f' {after_sentence}'
|
67 |
+
example['sentence'] = f"{before_sentence}{example['answer']}{after_sentence}"
|
68 |
+
|
69 |
+
# get paragraph_sentence
|
70 |
+
before = '' if before == '' else f'{before} '
|
71 |
+
after = '' if after == '' else f' {after}'
|
72 |
+
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after)
|
73 |
+
example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text)
|
74 |
+
|
75 |
+
# get paragraph_answer
|
76 |
+
source_text = '{0}{1} {2} {1}{3}'.format(
|
77 |
+
example['paragraph'][:start], HIGHLIGHT_TOKEN, example['answer'],
|
78 |
+
example['paragraph'][start + len(example['answer']):])
|
79 |
+
example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text)
|
80 |
+
|
81 |
+
# get sentence_answer
|
82 |
+
if len(before_tmp) == 0 or before_tmp[-1].endswith('.'):
|
83 |
+
before = ''
|
84 |
+
else:
|
85 |
+
before = before_tmp[-1] if before_tmp[-1].endswith(' ') else f'{before_tmp[-1]} '
|
86 |
+
if len(after_tmp) == 0:
|
87 |
+
after = ''
|
88 |
+
else:
|
89 |
+
after = after_tmp[0] if after_tmp[0].startswith(' ') else f' {after_tmp[0]}'
|
90 |
+
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after)
|
91 |
+
example['sentence_answer'] = re.sub(r'\s+', ' ', source_text)
|
92 |
+
|
93 |
+
return example
|
94 |
+
|
95 |
+
|
96 |
+
if __name__ == '__main__':
|
97 |
+
output = './data/processed'
|
98 |
+
os.makedirs(output, exist_ok=True)
|
99 |
+
if DATASET_TYPES is not None:
|
100 |
+
dataset = load_dataset(DATASET_NAME, DATASET_TYPES)
|
101 |
+
else:
|
102 |
+
dataset = load_dataset(DATASET_NAME)
|
103 |
+
for _split in dataset.keys():
|
104 |
+
tmp_dataset = dataset[_split]
|
105 |
+
with open(f'{output}/{_split}.jsonl', 'w') as f:
|
106 |
+
for single_data in tqdm(tmp_dataset):
|
107 |
+
question_str = single_data['question']
|
108 |
+
paragraph_str = single_data['context']
|
109 |
+
answer_str = single_data['answers']['text']
|
110 |
+
if type(answer_str) == list:
|
111 |
+
answer_str = answer_str[0]
|
112 |
+
assert type(answer_str) is str, answer_str
|
113 |
+
assert type(question_str) is str, question_str
|
114 |
+
assert type(paragraph_str) is str, paragraph_str
|
115 |
+
tmp_data = process_single_data(question=question_str, paragraph=paragraph_str, answer=answer_str)
|
116 |
+
if tmp_data is None:
|
117 |
+
continue
|
118 |
+
tmp_data['paragraph_id'] = single_data['id']
|
119 |
+
f.write(json.dumps(tmp_data) + '\n')
|
120 |
+
if GENERATE_TEST_SPLIT:
|
121 |
+
# randomly sample for test set
|
122 |
+
with open(f'{output}/train.jsonl') as f:
|
123 |
+
lines_train = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
|
124 |
+
with open(f'{output}/validation.jsonl') as f:
|
125 |
+
size = len([i for i in f.read().split('\n') if len(i) > 0])
|
126 |
+
paragraph_ids = list(set([i['paragraph_id'] for i in lines_train]))
|
127 |
+
data_train = {p: [i for i in lines_train if i['paragraph_id'] == p] for p in paragraph_ids}
|
128 |
+
seed(0)
|
129 |
+
shuffle(paragraph_ids)
|
130 |
+
data_test = []
|
131 |
+
data_train_new = []
|
132 |
+
for i in paragraph_ids:
|
133 |
+
if len(data_test) < size:
|
134 |
+
data_test += data_train[i]
|
135 |
+
else:
|
136 |
+
data_train_new += data_train[i]
|
137 |
+
with open(f'{output}/train.jsonl', 'w') as f:
|
138 |
+
f.write('\n'.join([json.dumps(i) for i in data_train_new]))
|
139 |
+
with open(f'{output}/test.jsonl', 'w') as f:
|
140 |
+
f.write('\n'.join([json.dumps(i) for i in data_test]))
|
qg_ruquad.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" python -c "from datasets import load_dataset;load_dataset('.')" """
|
2 |
+
import json
|
3 |
+
from itertools import chain
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
logger = datasets.logging.get_logger(__name__)
|
7 |
+
_DESCRIPTION = """[SberSQuAD](https://huggingface.co/datasets/sberquad) dataset for question generation (QG) task."""
|
8 |
+
_URL = 'https://huggingface.co/datasets/asahi417/qg_ruquad/raw/main/data/processed'
|
9 |
+
_URLS = {
|
10 |
+
str(datasets.Split.TEST): f'{_URL}/test.jsonl',
|
11 |
+
str(datasets.Split.TRAIN): f'{_URL}/train.jsonl',
|
12 |
+
str(datasets.Split.VALIDATION): f'{_URL}/validation.jsonl'
|
13 |
+
}
|
14 |
+
|
15 |
+
|
16 |
+
class QGRuQuADConfig(datasets.BuilderConfig):
|
17 |
+
"""BuilderConfig for SquadQG"""
|
18 |
+
|
19 |
+
def __init__(self, **kwargs):
|
20 |
+
"""BuilderConfig for SquadQG.
|
21 |
+
Args:
|
22 |
+
**kwargs: keyword arguments forwarded to super.
|
23 |
+
"""
|
24 |
+
super(QGRuQuADConfig, self).__init__(**kwargs)
|
25 |
+
|
26 |
+
|
27 |
+
class QGRuQuAD(datasets.GeneratorBasedBuilder):
|
28 |
+
|
29 |
+
def _info(self):
|
30 |
+
return datasets.DatasetInfo(
|
31 |
+
description=_DESCRIPTION,
|
32 |
+
features=datasets.Features(
|
33 |
+
{
|
34 |
+
"answer": datasets.Value("string"),
|
35 |
+
"question": datasets.Value("string"),
|
36 |
+
"sentence": datasets.Value("string"),
|
37 |
+
"paragraph": datasets.Value("string"),
|
38 |
+
"sentence_answer": datasets.Value("string"),
|
39 |
+
"paragraph_answer": datasets.Value("string"),
|
40 |
+
"paragraph_sentence": datasets.Value("string"),
|
41 |
+
"paragraph_id": datasets.Value("string")
|
42 |
+
}
|
43 |
+
),
|
44 |
+
supervised_keys=None,
|
45 |
+
homepage="https://github.com/asahi417/lm-question-generation"
|
46 |
+
)
|
47 |
+
|
48 |
+
def _split_generators(self, dl_manager):
|
49 |
+
downloaded_file = dl_manager.download_and_extract(_URLS)
|
50 |
+
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
|
51 |
+
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
|
52 |
+
|
53 |
+
def _generate_examples(self, filepaths):
|
54 |
+
_key = 0
|
55 |
+
for filepath in filepaths:
|
56 |
+
logger.info("generating examples from = %s", filepath)
|
57 |
+
with open(filepath, encoding="utf-8") as f:
|
58 |
+
_list = f.read().split('\n')
|
59 |
+
if _list[-1] == '':
|
60 |
+
_list = _list[:-1]
|
61 |
+
for i in _list:
|
62 |
+
data = json.loads(i)
|
63 |
+
yield _key, data
|
64 |
+
_key += 1
|
65 |
+
|