Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
Korean
Size:
10K - 100K
ArXiv:
Tags:
question-generation
License:
""" | |
gsplit -l 1500 -d --additional-suffix=.jsonl test.jsonl test | |
gsplit -l 1500 -d --additional-suffix=.jsonl train.jsonl train | |
gsplit -l 1500 -d --additional-suffix=.jsonl validation.jsonl validation | |
rm -rf test.jsonl | |
rm -rf train.jsonl | |
rm -rf validation.jsonl | |
""" | |
import json | |
import os | |
import re | |
import spacy | |
from random import seed, shuffle | |
from tqdm import tqdm | |
from datasets import load_dataset | |
DATASET_NAME = "squad_kor_v1" | |
DATASET_TYPES = None | |
HIGHLIGHT_TOKEN = '<hl>' | |
GENERATE_TEST_SPLIT = True | |
SPLITTER = spacy.load('ko_core_news_sm') | |
def get_sentence(document: str): return [str(sent) for sent in SPLITTER(document).sents] | |
def process_single_data(question: str, paragraph: str, answer: str): | |
""" Convert single raw json data into QG format """ | |
example = {'question': question, 'paragraph': paragraph, 'answer': answer} | |
start = example['paragraph'].find(example['answer']) | |
end = start + len(answer) | |
assert paragraph[start:end] == answer | |
# get sentence | |
before_tmp = get_sentence(example['paragraph'][:start]) | |
if len(before_tmp) == 0: | |
before = '' | |
before_sentence = '' | |
else: | |
if before_tmp[-1].endswith('.'): | |
before = ' '.join(before_tmp) | |
before_sentence = '' | |
else: | |
before = ' '.join(before_tmp[:-1]) | |
before_sentence = before_tmp[-1] | |
before_sentence = before_sentence if before_sentence.endswith(' ') else f'{before_sentence} ' | |
after_tmp = get_sentence(example['paragraph'][start + len(example['answer']):]) | |
if len(after_tmp) == 0: | |
after = '' | |
after_sentence = '' | |
else: | |
after = ' '.join(after_tmp[1:]) | |
after_sentence = after_tmp[0] | |
after_sentence = after_sentence if after_sentence.startswith(' ') else f' {after_sentence}' | |
example['sentence'] = f"{before_sentence}{example['answer']}{after_sentence}" | |
# get paragraph_sentence | |
before = '' if before == '' else f'{before} ' | |
after = '' if after == '' else f' {after}' | |
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after) | |
example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text) | |
# get paragraph_answer | |
source_text = '{0}{1} {2} {1}{3}'.format( | |
example['paragraph'][:start], HIGHLIGHT_TOKEN, example['answer'], | |
example['paragraph'][start + len(example['answer']):]) | |
example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text) | |
# get sentence_answer | |
if len(before_tmp) == 0 or before_tmp[-1].endswith('.'): | |
before = '' | |
else: | |
before = before_tmp[-1] if before_tmp[-1].endswith(' ') else f'{before_tmp[-1]} ' | |
if len(after_tmp) == 0: | |
after = '' | |
else: | |
after = after_tmp[0] if after_tmp[0].startswith(' ') else f' {after_tmp[0]}' | |
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after) | |
example['sentence_answer'] = re.sub(r'\s+', ' ', source_text) | |
return example | |
if __name__ == '__main__': | |
output = './data/processed' | |
os.makedirs(output, exist_ok=True) | |
if DATASET_TYPES is not None: | |
dataset = load_dataset(DATASET_NAME, DATASET_TYPES) | |
else: | |
dataset = load_dataset(DATASET_NAME) | |
for _split in dataset.keys(): | |
tmp_dataset = dataset[_split] | |
with open(f'{output}/{_split}.jsonl', 'w') as f: | |
for single_data in tqdm(tmp_dataset): | |
question_str = single_data['question'] | |
paragraph_str = single_data['context'] | |
answer_str = single_data['answers']['text'] | |
if type(answer_str) == list: | |
answer_str = answer_str[0] | |
assert type(answer_str) is str, answer_str | |
assert type(question_str) is str, question_str | |
assert type(paragraph_str) is str, paragraph_str | |
tmp_data = process_single_data(question=question_str, paragraph=paragraph_str, answer=answer_str) | |
tmp_data['paragraph_id'] = single_data['id'] | |
f.write(json.dumps(tmp_data) + '\n') | |
if GENERATE_TEST_SPLIT: | |
# randomly sample for test set | |
with open(f'{output}/train.jsonl') as f: | |
lines_train = [json.loads(i) for i in f.read().split('\n') if len(i) > 0] | |
with open(f'{output}/validation.jsonl') as f: | |
size = len([i for i in f.read().split('\n') if len(i) > 0]) | |
paragraph_ids = list(set([i['paragraph_id'] for i in lines_train])) | |
data_train = {p: [i for i in lines_train if i['paragraph_id'] == p] for p in paragraph_ids} | |
seed(0) | |
shuffle(paragraph_ids) | |
data_test = [] | |
data_train_new = [] | |
for i in paragraph_ids: | |
if len(data_test) < size: | |
data_test += data_train[i] | |
else: | |
data_train_new += data_train[i] | |
with open(f'{output}/train.jsonl', 'w') as f: | |
f.write('\n'.join([json.dumps(i) for i in data_train_new])) | |
with open(f'{output}/test.jsonl', 'w') as f: | |
f.write('\n'.join([json.dumps(i) for i in data_test])) | |