Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
Japanese
Size:
10K - 100K
ArXiv:
Tags:
question-generation
License:
""" Script to process raw SQuAD file for Question Generation format | |
cd data/processed | |
gsplit -l 500 -d --additional-suffix=.jsonl train.jsonl train | |
gsplit -l 500 -d --additional-suffix=.jsonl test.jsonl test | |
gsplit -l 1000 -d --additional-suffix=.jsonl validation.jsonl validation | |
rm -rf test.jsonl | |
rm -rf train.jsonl | |
rm -rf validation.jsonl | |
""" | |
import json | |
import os | |
import re | |
from tqdm import tqdm | |
from typing import Dict | |
from datasets import load_dataset | |
from ja_sentence_split import JASplitter | |
HIGHLIGHT_TOKEN = '<hl>' | |
SPLITTER = JASplitter() | |
def get_sentence(document: str): | |
return [str(s) for s in SPLITTER(document)] | |
def process_single_data(data: Dict): | |
""" Convert single raw json data into QG format """ | |
example = {'question': data["question"], 'paragraph': data["context"]} | |
# check answer | |
answer_text = data['answers']['text'][0] | |
answer_start = data['answers']['answer_start'][0] | |
answer_end = answer_start + len(answer_text) | |
assert example['paragraph'][answer_start: answer_end] == answer_text | |
example['answer'] = answer_text | |
# get sentence | |
position = example['paragraph'].find(example['answer']) | |
assert position != -1 | |
before_tmp = get_sentence(example['paragraph'][:position]) | |
if len(before_tmp) == 0: | |
before = '' | |
before_sentence = '' | |
else: | |
if before_tmp[-1].endswith('γ'): | |
before = ' '.join(before_tmp) | |
before_sentence = '' | |
else: | |
before = ' '.join(before_tmp[:-1]) | |
before_sentence = before_tmp[-1] | |
after_tmp = get_sentence(example['paragraph'][position + len(example['answer']):]) | |
if len(after_tmp) == 0: | |
after = '' | |
after_sentence = '' | |
else: | |
after = ' '.join(after_tmp[1:]) | |
after_sentence = after_tmp[0] | |
example['sentence'] = '{}{}{}'.format(before_sentence, example['answer'], after_sentence) | |
# get paragraph_sentence | |
source_text = '{0}{1}{2}{1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after) | |
example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text) | |
# get paragraph_answer | |
source_text = '{0}{1}{2}{1}{3}'.format( | |
example['paragraph'][:position], HIGHLIGHT_TOKEN, example['answer'], | |
example['paragraph'][position + len(example['answer']):]) | |
example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text) | |
# get sentence_answer | |
if len(before_tmp) == 0 or before_tmp[-1].endswith('γ'): | |
before = '' | |
else: | |
before = before_tmp[-1] | |
if len(after_tmp) == 0: | |
after = '' | |
else: | |
after = after_tmp[0] | |
source_text = '{0}{1}{2}{1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after) | |
example['sentence_answer'] = re.sub(r'\s+', ' ', source_text) | |
for _k in example.keys(): | |
example[_k] = example[_k].replace('γ\n\n', 'γ').replace('γ\n', 'γ') | |
return example | |
if __name__ == '__main__': | |
jaquad_data = load_dataset("SkelterLabsInc/JaQuAD") | |
data_dev = jaquad_data['validation'] | |
# create test set from training | |
data_train = jaquad_data['train'] | |
context = sorted(list(set(data_train['context']))) | |
data_test = [data_train[i] for i in range(len(data_train)) if data_train[i]['context'] in context[:927]] | |
data_train = [data_train[i] for i in range(len(data_train)) if data_train[i]['context'] in context[927:]] | |
print(f'train ({len(data_train)}, test ({len(data_test)}), dev ({len(data_dev)})') | |
data_all = {'train': data_train, 'validation': data_dev, 'test': data_test} | |
output = './data/processed' | |
os.makedirs(output, exist_ok=True) | |
for k, _data in data_all.items(): | |
with open('{}/{}.jsonl'.format(output, k), 'w') as f: | |
for single_data in tqdm(_data): | |
single_data = process_single_data(single_data) | |
f.write(json.dumps(single_data) + '\n') | |