File size: 1,950 Bytes
44ac713 5885f0f 44ac713 5885f0f 44ac713 d975f20 a26b3fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
dataset_info:
features:
- name: image
dtype: image
- name: image_coco_url
dtype: string
- name: image_date_captured
dtype: string
- name: image_file_name
dtype: string
- name: image_height
dtype: int32
- name: image_width
dtype: int32
- name: image_id
dtype: int32
- name: image_license
dtype: int8
- name: image_open_images_id
dtype: string
- name: annotations_ids
sequence: int32
- name: annotations_captions
sequence: string
splits:
- name: validation
num_bytes: 1421862846.0
num_examples: 4500
- name: test
num_bytes: 3342844310.0
num_examples: 10600
download_size: 4761076789
dataset_size: 4764707156.0
configs:
- config_name: default
data_files:
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
<p align="center" width="100%">
<img src="https://i.postimg.cc/g0QRgMVv/WX20240228-113337-2x.png" width="100%" height="80%">
</p>
# Large-scale Multi-modality Models Evaluation Suite
> Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval`
π [Homepage](https://lmms-lab.github.io/) | π [Documentation](docs/README.md) | π€ [Huggingface Datasets](https://huggingface.co/lmms-lab)
# This Dataset
This is a formatted version of [NoCaps](https://nocaps.org/). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models.
```
@inproceedings{Agrawal_2019,
title={nocaps: novel object captioning at scale},
url={http://dx.doi.org/10.1109/ICCV.2019.00904},
DOI={10.1109/iccv.2019.00904},
booktitle={2019 IEEE/CVF International Conference on Computer Vision (ICCV)},
publisher={IEEE},
author={Agrawal, Harsh and Desai, Karan and Wang, Yufei and Chen, Xinlei and Jain, Rishabh and Johnson, Mark and Batra, Dhruv and Parikh, Devi and Lee, Stefan and Anderson, Peter},
year={2019},
month=oct }
``` |