ICEWS14 / ICEWS14.py
linxy's picture
Update ICEWS14.py
5ea5860 verified
raw
history blame
No virus
19.9 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""
TL;DR: The datasets for temporal knowledge graph reasoning task.
[[Github]](https://github.com/LinXueyuanStdio/TFLEX)
[[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L)
[[arXiv]](https://arxiv.org/abs/2205.14307)
- Built over ICEWS and GDELT, which are widly used benchmarks in TKGC.
- First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph"
- Please refer to the original paper for more details.
"""
from dataclasses import dataclass
from typing import List, Dict, Set, Optional, TypedDict
import json
import os
import datasets
_CITATION = """\
@inproceedings{
xueyuan2023tflex,
title={TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph},
author={Lin Xueyuan and Haihong E and Chengjin Xu and Gengxian Zhou and Haoran Luo and Tianyi Hu and Fenglong Su and Ningyuan Li and Mingzhi Sun},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=oaGdsgB18L}
}\
"""
# TODO: Add description of the dataset here
_DESCRIPTION = """\
TL;DR: The datasets for temporal knowledge graph reasoning task.
[[Github]](https://github.com/LinXueyuanStdio/TFLEX)
[[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L)
[[arXiv]](https://arxiv.org/abs/2205.14307)
- Built over ICEWS and GDELT, which are widly used benchmarks in TKGC.
- First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph"
- Please refer to the original paper for more details.
"""
_HOMEPAGE = "https://github.com/LinXueyuanStdio/TFLEX"
_LICENSE = "[Apache License 2.0](https://github.com/LinXueyuanStdio/TFLEX/blob/main/LICENSE)"
query_name_to_args: Dict[str, List[str]] = {
# 1. 1-hop Pe and Pt, manually
"Pe": ['e1', 'r1', 't1'],
"Pt": ['e1', 'r1', 'e2'],
# 2. entity multi-hop
"Pe2": ['e1', 'r1', 't1', 'r2', 't2'],
"Pe3": ['e1', 'r1', 't1', 'r2', 't2', 'r3', 't3'],
# 3. time multi-hop
"aPt": ['s', 'r', 'o'],
"bPt": ['s', 'r', 'o'],
"Pt_sPe": ['e1', 'r1', 't1', 'r2', 'e2'],
"Pt_oPe": ['e1', 'r1', 'e2', 'r2', 't1'],
"Pe_Pt": ['e1', 'r1', 'e2', 'r2', 'e3'],
"Pe_aPt": ['e1', 'r1', 'e2', 'r2', 'e3'],
"Pe_bPt": ['e1', 'r1', 'e2', 'r2', 'e3'],
"Pe_nPt": ['e1', 'r1', 'e2', 'r2', 'e3'],
"Pt_sPe_Pt": ['s1', 'r1', 's2', 'r2', 'o1', 'r3', 'o2'],
"Pt_oPe_Pt": ['s1', 'r1', 's2', 'r2', 's3', 'r3', 'o1'],
# 4. entity and & time and
"e2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2'],
"e3i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'e3', 'r3', 't3'],
"t2i": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
"t3i": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4', 'e5', 'r3', 'e6'],
# 5. complex time and
"e2i_Pe": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'],
"Pe_e2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'],
"Pt_se2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 'e3'],
"Pt_oe2i": ['e1', 'r1', 'e2', 'r2', 't1', 'e3', 'r3', 't2'],
"t2i_Pe": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'],
"Pe_t2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
"Pe_at2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
"Pe_bt2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
"Pe_nt2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
"between": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
# 5. entity not
"e2i_N": ['e1', 'r1', 't1', 'e2', 'r2', 't2'],
"e3i_N": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'e3', 'r3', 't3'],
"Pe_e2i_Pe_NPe": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'],
"e2i_NPe": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'],
"e2i_PeN": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'],
# 6. time not
"t2i_N": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
"t3i_N": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4', 'e5', 'r3', 'e6'],
"Pe_t2i_PtPe_NPt": ['e1', 'r1', 'e2', 'r2', 't2', 'r3', 'e3', 'e4', 'r4', 'e5'],
"t2i_NPt": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'],
"t2i_PtN": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'],
# 7. entity union & time union
"e2u": ['e1', 'r1', 't1', 'e2', 'r2', 't2'],
"Pe_e2u": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'],
"t2u": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
"Pe_t2u": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
}
query_structures: Dict[str, str] = {
# 1. 1-hop Pe and Pt, manually
"Pe": "def Pe(e1, r1, t1): return Pe(e1, r1, t1)", # 1p
"Pt": "def Pt(e1, r1, e2): return Pt(e1, r1, e2)", # 1p, temporal
# 2. entity multi-hop
"Pe2": "def Pe2(e1, r1, t1, r2, t2): return Pe(Pe(e1, r1, t1), r2, t2)", # 2p
"Pe3": "def Pe3(e1, r1, t1, r2, t2, r3, t3): return Pe(Pe(Pe(e1, r1, t1), r2, t2), r3, t3)", # 3p
# 3. time multi-hop
"aPt": "def aPt(s, r, o): return after(Pt(s, r, o))", # a for after
"bPt": "def bPt(s, r, o): return before(Pt(s, r, o))", # b for before
"Pt_lPe": "def Pt_lPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)", # l for left (as head entity)
"Pt_rPe": "def Pt_rPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))", # r for right (as tail entity)
"Pt_sPe": "def Pt_sPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)", # l for left (as head entity)
"Pt_oPe": "def Pt_oPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))", # r for right (as tail entity)
"Pe_Pt": "def Pe_Pt(e1, r1, e2, r2, e3): return Pe(e1, r1, Pt(e2, r2, e3))", # at
"Pe_aPt": "def Pe_aPt(e1, r1, e2, r2, e3): return Pe(e1, r1, after(Pt(e2, r2, e3)))", # a for after
"Pe_bPt": "def Pe_bPt(e1, r1, e2, r2, e3): return Pe(e1, r1, before(Pt(e2, r2, e3)))", # b for before
"Pe_nPt": "def Pe_nPt(e1, r1, e2, r2, e3): return Pe(e1, r1, next(Pt(e2, r2, e3)))", # n for next
"Pt_sPe_Pt": "def Pt_sPe_Pt(s1, r1, s2, r2, o1, r3, o2): return Pt(Pe(s1, r1, Pt(s2, r2, o1)), r3, o2)",
"Pt_oPe_Pt": "def Pt_oPe_Pt(s1, r1, s2, r2, s3, r3, o1): return Pt(s1, r1, Pe(s2, r2, Pt(s3, r3, o1)))",
# 4. entity and & time and
"e2i": "def e2i(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Pe(e2, r2, t2))", # 2i
"e3i": "def e3i(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Pe(e3, r3, t3))", # 3i
"t2i": "def t2i(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), Pt(e3, r2, e4))", # t-2i
"t3i": "def t3i(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), Pt(e5, r3, e6))", # t-3i
# 5. complex time and
"e2i_Pe": "def e2i_Pe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Pe(e2, r3, t3))", # pi
"Pe_e2i": "def Pe_e2i(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(e2i(e1, r1, t1, e2, r2, t2), r3, t3)", # ip
"Pt_le2i": "def Pt_le2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)", # mix ip
"Pt_re2i": "def Pt_re2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))", # mix ip
"Pt_se2i": "def Pt_se2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)", # mix ip
"Pt_oe2i": "def Pt_oe2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))", # mix ip
"t2i_Pe": "def t2i_Pe(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), Pt(e3, r3, e4))", # t-pi
"Pe_t2i": "def Pe_t2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, t2i(e2, r2, e3, e4, r3, e5))", # t-ip
"Pe_at2i": "def Pe_at2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, after(t2i(e2, r2, e3, e4, r3, e5)))",
"Pe_bt2i": "def Pe_bt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, before(t2i(e2, r2, e3, e4, r3, e5)))",
"Pe_nt2i": "def Pe_nt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, next(t2i(e2, r2, e3, e4, r3, e5)))",
"between": "def between(e1, r1, e2, e3, r2, e4): return TimeAnd(after(Pt(e1, r1, e2)), before(Pt(e3, r2, e4)))", # between(t1, t2) == after t1 and before t2
# 5. entity not
"e2i_N": "def e2i_N(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2)))", # 2in
"e3i_N": "def e3i_N(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Not(Pe(e3, r3, t3)))", # 3in
"Pe_e2i_Pe_NPe": "def Pe_e2i_Pe_NPe(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2))), r3, t3)", # inp
"e2i_PeN": "def e2i_PeN(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Not(Pe(e2, r3, t3)))", # pin
"e2i_NPe": "def e2i_NPe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Not(Pe(Pe(e1, r1, t1), r2, t2)), Pe(e2, r3, t3))", # pni = e2i_N(Pe(e1, r1, t1), r2, t2, e2, r3, t3)
# 6. time not
"t2i_N": "def t2i_N(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), TimeNot(Pt(e3, r2, e4)))", # t-2in
"t3i_N": "def t3i_N(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), TimeNot(Pt(e5, r3, e6)))", # t-3in
"Pe_t2i_PtPe_NPt": "def Pe_t2i_PtPe_NPt(e1, r1, e2, r2, t2, r3, e3, e4, r4, e5): return Pe(e1, r1, TimeAnd(Pt(Pe(e2, r2, t2), r3, e3), TimeNot(Pt(e4, r4, e5))))", # t-inp
"t2i_PtN": "def t2i_PtN(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), TimeNot(Pt(e3, r3, e4)))", # t-pin
"t2i_NPt": "def t2i_NPt(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(TimeNot(Pt(Pe(e1, r1, t1), r2, e2)), Pt(e3, r3, e4))", # t-pni
# 7. entity union & time union
"e2u": "def e2u(e1, r1, t1, e2, r2, t2): return Or(Pe(e1, r1, t1), Pe(e2, r2, t2))", # 2u
"Pe_e2u": "def Pe_e2u(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Or(Pe(e1, r1, t1), Pe(e2, r2, t2)), r3, t3)", # up
"t2u": "def t2u(e1, r1, e2, e3, r2, e4): return TimeOr(Pt(e1, r1, e2), Pt(e3, r2, e4))", # t-2u
"Pe_t2u": "def Pe_t2u(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeOr(Pt(e2, r2, e3), Pt(e4, r3, e5)))", # t-up
# 8. union-DM
"e2u_DM": "def e2u_DM(e1, r1, t1, e2, r2, t2): return Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2))))", # 2u-DM
"Pe_e2u_DM": "def Pe_e2u_DM(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2)))), r3, t3)", # up-DM
"t2u_DM": "def t2u_DM(e1, r1, e2, e3, r2, e4): return TimeNot(TimeAnd(TimeNot(Pt(e1, r1, e2)), TimeNot(Pt(e3, r2, e4))))", # t-2u-DM
"Pe_t2u_DM": "def Pe_t2u_DM(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeNot(TimeAnd(TimeNot(Pt(e2, r2, e3)), TimeNot(Pt(e4, r3, e5)))))", # t-up-DM
# 9. union-DNF
"e2u_DNF": "def e2u_DNF(e1, r1, t1, e2, r2, t2): return Pe(e1, r1, t1), Pe(e2, r2, t2)", # 2u_DNF
"Pe_e2u_DNF": "def Pe_e2u_DNF(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Pe(e1, r1, t1), r3, t3), Pe(Pe(e2, r2, t2), r3, t3)", # up_DNF
"t2u_DNF": "def t2u_DNF(e1, r1, e2, e3, r2, e4): return Pt(e1, r1, e2), Pt(e3, r2, e4)", # t-2u_DNF
"Pe_t2u_DNF": "def Pe_t2u_DNF(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, Pt(e2, r2, e3)), Pe(e1, r1, Pt(e4, r3, e5))", # t-up_DNF
}
union_query_structures: List[str] = [
"e2u", "Pe_e2u", # 2u, up
"t2u", "Pe_t2u", # t-2u, t-up
]
train_query_structures: List[str] = [
# entity
"Pe", "Pe2", "Pe3", "e2i", "e3i", # 1p, 2p, 3p, 2i, 3i
"e2i_NPe", "e2i_PeN", "Pe_e2i_Pe_NPe", "e2i_N", "e3i_N", # npi, pni, inp, 2in, 3in
# time
"Pt", "Pt_lPe", "Pt_rPe", "Pe_Pt", "Pe_aPt", "Pe_bPt", "Pe_nPt", # t-1p, t-2p
"t2i", "t3i", "Pt_le2i", "Pt_re2i", "Pe_t2i", "Pe_at2i", "Pe_bt2i", "Pe_nt2i", "between", # t-2i, t-3i
"t2i_NPt", "t2i_PtN", "Pe_t2i_PtPe_NPt", "t2i_N", "t3i_N", # t-npi, t-pni, t-inp, t-2in, t-3in
]
test_query_structures: List[str] = train_query_structures + [
# entity
"e2i_Pe", "Pe_e2i", # pi, ip
"e2u", "Pe_e2u", # 2u, up
# time
"t2i_Pe", "Pe_t2i", # t-pi, t-ip
"t2u", "Pe_t2u", # t-2u, t-up
# union-DM
"e2u_DM", "Pe_e2u_DM", # 2u-DM, up-DM
"t2u_DM", "Pe_t2u_DM", # t-2u-DM, t-up-DM
]
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_HOST = "https://huggingface.co/datasets"
_AUTHOR = "linxy"
_DATASET = "ICEWS14"
_URLS = {
name: f"{_HOST}/{_AUTHOR}/{_DATASET}/resolve/main/zips/{name}.zip?download=true"
for name in ["all"] + list(query_name_to_args.keys())
}
class QueryData(TypedDict):
"""
saved in training split: query_name, query, answer
saved in valid or test split: query_name, query, answer, easy_answer
iterating training dataloader: query_name, query, answer, args, definition
iterating valid or test dataloader: query_name, query, answer, easy_answer, args, definition
"""
query_name: str
query: List[int]
answer: Set[int]
easy_answer: Optional[Set[int]] = None # may be empty, indicating that no easy answer exists in training graph.
args: Optional[List[str]] = None
definition: Optional[str] = None
@dataclass
class TKGRBuilderConfig(datasets.BuilderConfig):
"""BuilderConfig for TKGR (Temporal Knowledge Graph Reasoning)."""
query_structure_name: str = "default"
class ICEWS14Dataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
STANDARD_BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=query_name,
version=datasets.Version("1.0.0"),
description=query_structures[query_name],
)
for query_name in list(query_name_to_args.keys())
]
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="all",
version=VERSION,
description=f"All types of queries. Train: {train_query_structures}, Valid | Test: {test_query_structures}",
)
] + STANDARD_BUILDER_CONFIGS
DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if self.config.name == "all": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"query_name": datasets.Value("string"),
"definition": datasets.Value("string"),
"query": datasets.Sequence(feature=datasets.Value("int32")),
"answer": datasets.Sequence(feature=datasets.Value("int32")),
"easy_answer": datasets.Sequence(feature=datasets.Value("int32")),
"args": datasets.Sequence(feature=datasets.Value("string")),
}
)
else:
features = datasets.Features(
{
"query_name": datasets.Value("string"),
"definition": datasets.Value("string"),
"query": datasets.Sequence(feature=datasets.Value("int32")),
"answer": datasets.Sequence(feature=datasets.Value("int32")),
"easy_answer": datasets.Sequence(feature=datasets.Value("int32")),
"args": datasets.Sequence(feature=datasets.Value("string")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "valid.jsonl"),
"split": "valid",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "test.jsonl"),
"split": "test"
},
),
]
def _generate_examples(self, filepath, split):
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
# This method yields (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
if not os.path.exists(filepath):
return
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
query_name = data["query_name"]
if self.config.name == "all":
yield key, {
"query_name": query_name,
"query": data["query"],
"answer": data["answer"],
"easy_answer": data["easy_answer"] if "easy_answer" in data else None,
"args": query_name_to_args[query_name],
"definition": query_structures[query_name],
}
else:
yield key, {
"query_name": query_name,
"query": data["query"],
"answer": data["answer"],
"easy_answer": data["easy_answer"] if "easy_answer" in data else None,
"args": query_name_to_args[query_name],
"definition": query_structures[query_name],
}