# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments """ TL;DR: The datasets for temporal knowledge graph reasoning task. [[Github]](https://github.com/LinXueyuanStdio/TFLEX) [[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L) [[arXiv]](https://arxiv.org/abs/2205.14307) - Built over ICEWS and GDELT, which are widly used benchmarks in TKGC. - First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph" - Please refer to the original paper for more details. """ from dataclasses import dataclass from typing import List, Dict, Set, Optional, TypedDict import json import os import datasets _CITATION = """\ @inproceedings{ xueyuan2023tflex, title={TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph}, author={Lin Xueyuan and Haihong E and Chengjin Xu and Gengxian Zhou and Haoran Luo and Tianyi Hu and Fenglong Su and Ningyuan Li and Mingzhi Sun}, booktitle={Thirty-seventh Conference on Neural Information Processing Systems}, year={2023}, url={https://openreview.net/forum?id=oaGdsgB18L} }\ """ # TODO: Add description of the dataset here _DESCRIPTION = """\ TL;DR: The datasets for temporal knowledge graph reasoning task. [[Github]](https://github.com/LinXueyuanStdio/TFLEX) [[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L) [[arXiv]](https://arxiv.org/abs/2205.14307) - Built over ICEWS and GDELT, which are widly used benchmarks in TKGC. - First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph" - Please refer to the original paper for more details. """ _HOMEPAGE = "https://github.com/LinXueyuanStdio/TFLEX" _LICENSE = "[Apache License 2.0](https://github.com/LinXueyuanStdio/TFLEX/blob/main/LICENSE)" query_name_to_args: Dict[str, List[str]] = { # 1. 1-hop Pe and Pt, manually "Pe": ['e1', 'r1', 't1'], "Pt": ['e1', 'r1', 'e2'], # 2. entity multi-hop "Pe2": ['e1', 'r1', 't1', 'r2', 't2'], "Pe3": ['e1', 'r1', 't1', 'r2', 't2', 'r3', 't3'], # 3. time multi-hop "aPt": ['s', 'r', 'o'], "bPt": ['s', 'r', 'o'], "Pt_sPe": ['e1', 'r1', 't1', 'r2', 'e2'], "Pt_oPe": ['e1', 'r1', 'e2', 'r2', 't1'], "Pe_Pt": ['e1', 'r1', 'e2', 'r2', 'e3'], "Pe_aPt": ['e1', 'r1', 'e2', 'r2', 'e3'], "Pe_bPt": ['e1', 'r1', 'e2', 'r2', 'e3'], "Pe_nPt": ['e1', 'r1', 'e2', 'r2', 'e3'], "Pt_sPe_Pt": ['s1', 'r1', 's2', 'r2', 'o1', 'r3', 'o2'], "Pt_oPe_Pt": ['s1', 'r1', 's2', 'r2', 's3', 'r3', 'o1'], # 4. entity and & time and "e2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2'], "e3i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'e3', 'r3', 't3'], "t2i": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'], "t3i": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4', 'e5', 'r3', 'e6'], # 5. complex time and "e2i_Pe": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'], "Pe_e2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'], "Pt_se2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 'e3'], "Pt_oe2i": ['e1', 'r1', 'e2', 'r2', 't1', 'e3', 'r3', 't2'], "t2i_Pe": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'], "Pe_t2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'], "Pe_at2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'], "Pe_bt2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'], "Pe_nt2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'], "between": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'], # 5. entity not "e2i_N": ['e1', 'r1', 't1', 'e2', 'r2', 't2'], "e3i_N": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'e3', 'r3', 't3'], "Pe_e2i_Pe_NPe": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'], "e2i_NPe": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'], "e2i_PeN": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'], # 6. time not "t2i_N": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'], "t3i_N": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4', 'e5', 'r3', 'e6'], "Pe_t2i_PtPe_NPt": ['e1', 'r1', 'e2', 'r2', 't2', 'r3', 'e3', 'e4', 'r4', 'e5'], "t2i_NPt": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'], "t2i_PtN": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'], # 7. entity union & time union "e2u": ['e1', 'r1', 't1', 'e2', 'r2', 't2'], "Pe_e2u": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'], "t2u": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'], "Pe_t2u": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'], } query_structures: Dict[str, str] = { # 1. 1-hop Pe and Pt, manually "Pe": "def Pe(e1, r1, t1): return Pe(e1, r1, t1)", # 1p "Pt": "def Pt(e1, r1, e2): return Pt(e1, r1, e2)", # 1p, temporal # 2. entity multi-hop "Pe2": "def Pe2(e1, r1, t1, r2, t2): return Pe(Pe(e1, r1, t1), r2, t2)", # 2p "Pe3": "def Pe3(e1, r1, t1, r2, t2, r3, t3): return Pe(Pe(Pe(e1, r1, t1), r2, t2), r3, t3)", # 3p # 3. time multi-hop "aPt": "def aPt(s, r, o): return after(Pt(s, r, o))", # a for after "bPt": "def bPt(s, r, o): return before(Pt(s, r, o))", # b for before "Pt_lPe": "def Pt_lPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)", # l for left (as head entity) "Pt_rPe": "def Pt_rPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))", # r for right (as tail entity) "Pt_sPe": "def Pt_sPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)", # l for left (as head entity) "Pt_oPe": "def Pt_oPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))", # r for right (as tail entity) "Pe_Pt": "def Pe_Pt(e1, r1, e2, r2, e3): return Pe(e1, r1, Pt(e2, r2, e3))", # at "Pe_aPt": "def Pe_aPt(e1, r1, e2, r2, e3): return Pe(e1, r1, after(Pt(e2, r2, e3)))", # a for after "Pe_bPt": "def Pe_bPt(e1, r1, e2, r2, e3): return Pe(e1, r1, before(Pt(e2, r2, e3)))", # b for before "Pe_nPt": "def Pe_nPt(e1, r1, e2, r2, e3): return Pe(e1, r1, next(Pt(e2, r2, e3)))", # n for next "Pt_sPe_Pt": "def Pt_sPe_Pt(s1, r1, s2, r2, o1, r3, o2): return Pt(Pe(s1, r1, Pt(s2, r2, o1)), r3, o2)", "Pt_oPe_Pt": "def Pt_oPe_Pt(s1, r1, s2, r2, s3, r3, o1): return Pt(s1, r1, Pe(s2, r2, Pt(s3, r3, o1)))", # 4. entity and & time and "e2i": "def e2i(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Pe(e2, r2, t2))", # 2i "e3i": "def e3i(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Pe(e3, r3, t3))", # 3i "t2i": "def t2i(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), Pt(e3, r2, e4))", # t-2i "t3i": "def t3i(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), Pt(e5, r3, e6))", # t-3i # 5. complex time and "e2i_Pe": "def e2i_Pe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Pe(e2, r3, t3))", # pi "Pe_e2i": "def Pe_e2i(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(e2i(e1, r1, t1, e2, r2, t2), r3, t3)", # ip "Pt_le2i": "def Pt_le2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)", # mix ip "Pt_re2i": "def Pt_re2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))", # mix ip "Pt_se2i": "def Pt_se2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)", # mix ip "Pt_oe2i": "def Pt_oe2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))", # mix ip "t2i_Pe": "def t2i_Pe(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), Pt(e3, r3, e4))", # t-pi "Pe_t2i": "def Pe_t2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, t2i(e2, r2, e3, e4, r3, e5))", # t-ip "Pe_at2i": "def Pe_at2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, after(t2i(e2, r2, e3, e4, r3, e5)))", "Pe_bt2i": "def Pe_bt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, before(t2i(e2, r2, e3, e4, r3, e5)))", "Pe_nt2i": "def Pe_nt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, next(t2i(e2, r2, e3, e4, r3, e5)))", "between": "def between(e1, r1, e2, e3, r2, e4): return TimeAnd(after(Pt(e1, r1, e2)), before(Pt(e3, r2, e4)))", # between(t1, t2) == after t1 and before t2 # 5. entity not "e2i_N": "def e2i_N(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2)))", # 2in "e3i_N": "def e3i_N(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Not(Pe(e3, r3, t3)))", # 3in "Pe_e2i_Pe_NPe": "def Pe_e2i_Pe_NPe(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2))), r3, t3)", # inp "e2i_PeN": "def e2i_PeN(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Not(Pe(e2, r3, t3)))", # pin "e2i_NPe": "def e2i_NPe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Not(Pe(Pe(e1, r1, t1), r2, t2)), Pe(e2, r3, t3))", # pni = e2i_N(Pe(e1, r1, t1), r2, t2, e2, r3, t3) # 6. time not "t2i_N": "def t2i_N(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), TimeNot(Pt(e3, r2, e4)))", # t-2in "t3i_N": "def t3i_N(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), TimeNot(Pt(e5, r3, e6)))", # t-3in "Pe_t2i_PtPe_NPt": "def Pe_t2i_PtPe_NPt(e1, r1, e2, r2, t2, r3, e3, e4, r4, e5): return Pe(e1, r1, TimeAnd(Pt(Pe(e2, r2, t2), r3, e3), TimeNot(Pt(e4, r4, e5))))", # t-inp "t2i_PtN": "def t2i_PtN(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), TimeNot(Pt(e3, r3, e4)))", # t-pin "t2i_NPt": "def t2i_NPt(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(TimeNot(Pt(Pe(e1, r1, t1), r2, e2)), Pt(e3, r3, e4))", # t-pni # 7. entity union & time union "e2u": "def e2u(e1, r1, t1, e2, r2, t2): return Or(Pe(e1, r1, t1), Pe(e2, r2, t2))", # 2u "Pe_e2u": "def Pe_e2u(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Or(Pe(e1, r1, t1), Pe(e2, r2, t2)), r3, t3)", # up "t2u": "def t2u(e1, r1, e2, e3, r2, e4): return TimeOr(Pt(e1, r1, e2), Pt(e3, r2, e4))", # t-2u "Pe_t2u": "def Pe_t2u(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeOr(Pt(e2, r2, e3), Pt(e4, r3, e5)))", # t-up # 8. union-DM "e2u_DM": "def e2u_DM(e1, r1, t1, e2, r2, t2): return Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2))))", # 2u-DM "Pe_e2u_DM": "def Pe_e2u_DM(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2)))), r3, t3)", # up-DM "t2u_DM": "def t2u_DM(e1, r1, e2, e3, r2, e4): return TimeNot(TimeAnd(TimeNot(Pt(e1, r1, e2)), TimeNot(Pt(e3, r2, e4))))", # t-2u-DM "Pe_t2u_DM": "def Pe_t2u_DM(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeNot(TimeAnd(TimeNot(Pt(e2, r2, e3)), TimeNot(Pt(e4, r3, e5)))))", # t-up-DM # 9. union-DNF "e2u_DNF": "def e2u_DNF(e1, r1, t1, e2, r2, t2): return Pe(e1, r1, t1), Pe(e2, r2, t2)", # 2u_DNF "Pe_e2u_DNF": "def Pe_e2u_DNF(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Pe(e1, r1, t1), r3, t3), Pe(Pe(e2, r2, t2), r3, t3)", # up_DNF "t2u_DNF": "def t2u_DNF(e1, r1, e2, e3, r2, e4): return Pt(e1, r1, e2), Pt(e3, r2, e4)", # t-2u_DNF "Pe_t2u_DNF": "def Pe_t2u_DNF(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, Pt(e2, r2, e3)), Pe(e1, r1, Pt(e4, r3, e5))", # t-up_DNF } union_query_structures: List[str] = [ "e2u", "Pe_e2u", # 2u, up "t2u", "Pe_t2u", # t-2u, t-up ] train_query_structures: List[str] = [ # entity "Pe", "Pe2", "Pe3", "e2i", "e3i", # 1p, 2p, 3p, 2i, 3i "e2i_NPe", "e2i_PeN", "Pe_e2i_Pe_NPe", "e2i_N", "e3i_N", # npi, pni, inp, 2in, 3in # time "Pt", "Pt_lPe", "Pt_rPe", "Pe_Pt", "Pe_aPt", "Pe_bPt", "Pe_nPt", # t-1p, t-2p "t2i", "t3i", "Pt_le2i", "Pt_re2i", "Pe_t2i", "Pe_at2i", "Pe_bt2i", "Pe_nt2i", "between", # t-2i, t-3i "t2i_NPt", "t2i_PtN", "Pe_t2i_PtPe_NPt", "t2i_N", "t3i_N", # t-npi, t-pni, t-inp, t-2in, t-3in ] test_query_structures: List[str] = train_query_structures + [ # entity "e2i_Pe", "Pe_e2i", # pi, ip "e2u", "Pe_e2u", # 2u, up # time "t2i_Pe", "Pe_t2i", # t-pi, t-ip "t2u", "Pe_t2u", # t-2u, t-up # union-DM "e2u_DM", "Pe_e2u_DM", # 2u-DM, up-DM "t2u_DM", "Pe_t2u_DM", # t-2u-DM, t-up-DM ] # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _HOST = "https://huggingface.co/datasets" _AUTHOR = "linxy" _DATASET = "ICEWS14" _URLS = { name: f"{_HOST}/{_AUTHOR}/{_DATASET}/resolve/main/zips/{name}.zip?download=true" for name in ["all"] + list(query_name_to_args.keys()) } class QueryData(TypedDict): """ saved in training split: query_name, query, answer saved in valid or test split: query_name, query, answer, easy_answer iterating training dataloader: query_name, query, answer, args, definition iterating valid or test dataloader: query_name, query, answer, easy_answer, args, definition """ query_name: str query: List[int] answer: Set[int] easy_answer: Optional[Set[int]] = None # may be empty, indicating that no easy answer exists in training graph. args: Optional[List[str]] = None definition: Optional[str] = None @dataclass class TKGRBuilderConfig(datasets.BuilderConfig): """BuilderConfig for TKGR (Temporal Knowledge Graph Reasoning).""" query_structure_name: str = "default" class ICEWS14Dataset(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.0.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') STANDARD_BUILDER_CONFIGS = [ datasets.BuilderConfig( name=query_name, version=datasets.Version("1.0.0"), description=query_structures[query_name], ) for query_name in list(query_name_to_args.keys()) ] BUILDER_CONFIGS = [ datasets.BuilderConfig( name="all", version=VERSION, description=f"All types of queries. Train: {train_query_structures}, Valid | Test: {test_query_structures}", ) ] + STANDARD_BUILDER_CONFIGS DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense. def _info(self): if self.config.name == "all": # This is the name of the configuration selected in BUILDER_CONFIGS above features = datasets.Features( { "query_name": datasets.Value("string"), "definition": datasets.Value("string"), "query": datasets.Sequence(feature=datasets.Value("int32")), "answer": datasets.Sequence(feature=datasets.Value("int32")), "easy_answer": datasets.Sequence(feature=datasets.Value("int32")), "args": datasets.Sequence(feature=datasets.Value("string")), } ) else: features = datasets.Features( { "query_name": datasets.Value("string"), "definition": datasets.Value("string"), "query": datasets.Sequence(feature=datasets.Value("int32")), "answer": datasets.Sequence(feature=datasets.Value("int32")), "easy_answer": datasets.Sequence(feature=datasets.Value("int32")), "args": datasets.Sequence(feature=datasets.Value("string")), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive urls = _URLS[self.config.name] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "train.jsonl"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "valid.jsonl"), "split": "valid", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "test.jsonl"), "split": "test" }, ), ] def _generate_examples(self, filepath, split): # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` # This method yields (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. if not os.path.exists(filepath): return with open(filepath, encoding="utf-8") as f: for key, row in enumerate(f): data = json.loads(row) query_name = data["query_name"] if self.config.name == "all": yield key, { "query_name": query_name, "query": data["query"], "answer": data["answer"], "easy_answer": data["easy_answer"] if "easy_answer" in data else None, "args": query_name_to_args[query_name], "definition": query_structures[query_name], } else: yield key, { "query_name": query_name, "query": data["query"], "answer": data["answer"], "easy_answer": data["easy_answer"] if "easy_answer" in data else None, "args": query_name_to_args[query_name], "definition": query_structures[query_name], }