Datasets:

Sub-tasks:
text-scoring
Languages:
English
ArXiv:
License:
File size: 4,944 Bytes
47b1169
 
 
 
 
f8bc0e4
47b1169
f8bc0e4
ff7484f
47b1169
 
 
 
 
 
 
52f22ad
47b1169
52f22ad
dc9263e
38d3e02
cc06b44
 
9b73550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47b1169
 
38d3e02
47b1169
 
 
 
dc9263e
47b1169
 
 
dc9263e
 
47b1169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc06b44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- text-scoring
paperswithcode_id: null
pretty_name: News Popularity in Multiple Social Media Platforms
tags:
- social-media-shares-prediction
dataset_info:
  features:
  - name: id
    dtype: int32
  - name: title
    dtype: string
  - name: headline
    dtype: string
  - name: source
    dtype: string
  - name: topic
    dtype: string
  - name: publish_date
    dtype: string
  - name: facebook
    dtype: int32
  - name: google_plus
    dtype: int32
  - name: linked_in
    dtype: int32
  splits:
  - name: train
    num_bytes: 27927641
    num_examples: 93239
  download_size: 30338277
  dataset_size: 27927641
---

# Dataset Card for News Popularity in Multiple Social Media Platforms

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [UCI](https://archive.ics.uci.edu/ml/datasets/News+Popularity+in+Multiple+Social+Media+Platforms)
- **Repository:**
- **Paper:** [Arxiv](https://arxiv.org/abs/1801.07055)
- **Leaderboard:** [Kaggle](https://www.kaggle.com/nikhiljohnk/news-popularity-in-multiple-social-media-platforms/code)
- **Point of Contact:**

### Dataset Summary

Social sharing data across Facebook, Google+ and LinkedIn for 100k news items on the topics of: economy, microsoft, obama and palestine.

### Supported Tasks and Leaderboards

Popularity prediction/shares prediction

### Languages

English

## Dataset Structure

### Data Instances

```
{ "id": 35873,
  "title": "Microsoft's 'teen girl' AI turns into a Hitler-loving sex robot within 24 ...",
  "headline": "Developers at Microsoft created 'Tay', an AI modelled to speak 'like a teen girl', in order to improve the customer service on their voice",
  "source": "Telegraph.co.uk",
  "topic": "microsoft",
  "publish_date": "2016-03-24 09:53:54",
  "facebook": 22346,
  "google_plus": 973,
  "linked_in": 1009
}
```

### Data Fields

- id: the sentence id in the source dataset
- title: the title of the link as shared on social media
- headline: the headline, or sometimes the lede of the story
- source: the source news site
- topic: the topic: one of "economy", "microsoft", "obama" and "palestine"
- publish_date: the date the original article was published
- facebook: the number of Facebook shares, or -1 if this data wasn't collected
- google_plus: the number of Google+ likes, or -1 if this data wasn't collected
- linked_in: the number of LinkedIn shares, or -1 if if this data wasn't collected

### Data Splits

None

## Dataset Creation

### Curation Rationale

### Source Data

#### Initial Data Collection and Normalization

#### Who are the source language producers?

The source headlines were by journalists, while the titles were written by the
people sharing it on social media.

### Annotations

#### Annotation process

The 'annotations' are simply the number of shares, or likes in the case of
Google+ as collected from various API endpoints.

#### Who are the annotators?

Social media users.

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

License: Creative Commons Attribution 4.0 International License (CC-BY)

### Citation Information

```
@article{Moniz2018MultiSourceSF,
  title={Multi-Source Social Feedback of Online News Feeds},
  author={N. Moniz and L. Torgo},
  journal={ArXiv},
  year={2018},
  volume={abs/1801.07055}
}
```

### Contributions

Thanks to [@frankier](https://github.com/frankier) for adding this dataset.