Datasets:
Tasks:
Text Classification
Sub-tasks:
text-scoring
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
File size: 4,944 Bytes
47b1169 f8bc0e4 47b1169 f8bc0e4 ff7484f 47b1169 52f22ad 47b1169 52f22ad dc9263e 38d3e02 cc06b44 9b73550 47b1169 38d3e02 47b1169 dc9263e 47b1169 dc9263e 47b1169 cc06b44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- text-scoring
paperswithcode_id: null
pretty_name: News Popularity in Multiple Social Media Platforms
tags:
- social-media-shares-prediction
dataset_info:
features:
- name: id
dtype: int32
- name: title
dtype: string
- name: headline
dtype: string
- name: source
dtype: string
- name: topic
dtype: string
- name: publish_date
dtype: string
- name: facebook
dtype: int32
- name: google_plus
dtype: int32
- name: linked_in
dtype: int32
splits:
- name: train
num_bytes: 27927641
num_examples: 93239
download_size: 30338277
dataset_size: 27927641
---
# Dataset Card for News Popularity in Multiple Social Media Platforms
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [UCI](https://archive.ics.uci.edu/ml/datasets/News+Popularity+in+Multiple+Social+Media+Platforms)
- **Repository:**
- **Paper:** [Arxiv](https://arxiv.org/abs/1801.07055)
- **Leaderboard:** [Kaggle](https://www.kaggle.com/nikhiljohnk/news-popularity-in-multiple-social-media-platforms/code)
- **Point of Contact:**
### Dataset Summary
Social sharing data across Facebook, Google+ and LinkedIn for 100k news items on the topics of: economy, microsoft, obama and palestine.
### Supported Tasks and Leaderboards
Popularity prediction/shares prediction
### Languages
English
## Dataset Structure
### Data Instances
```
{ "id": 35873,
"title": "Microsoft's 'teen girl' AI turns into a Hitler-loving sex robot within 24 ...",
"headline": "Developers at Microsoft created 'Tay', an AI modelled to speak 'like a teen girl', in order to improve the customer service on their voice",
"source": "Telegraph.co.uk",
"topic": "microsoft",
"publish_date": "2016-03-24 09:53:54",
"facebook": 22346,
"google_plus": 973,
"linked_in": 1009
}
```
### Data Fields
- id: the sentence id in the source dataset
- title: the title of the link as shared on social media
- headline: the headline, or sometimes the lede of the story
- source: the source news site
- topic: the topic: one of "economy", "microsoft", "obama" and "palestine"
- publish_date: the date the original article was published
- facebook: the number of Facebook shares, or -1 if this data wasn't collected
- google_plus: the number of Google+ likes, or -1 if this data wasn't collected
- linked_in: the number of LinkedIn shares, or -1 if if this data wasn't collected
### Data Splits
None
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
The source headlines were by journalists, while the titles were written by the
people sharing it on social media.
### Annotations
#### Annotation process
The 'annotations' are simply the number of shares, or likes in the case of
Google+ as collected from various API endpoints.
#### Who are the annotators?
Social media users.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
License: Creative Commons Attribution 4.0 International License (CC-BY)
### Citation Information
```
@article{Moniz2018MultiSourceSF,
title={Multi-Source Social Feedback of Online News Feeds},
author={N. Moniz and L. Torgo},
journal={ArXiv},
year={2018},
volume={abs/1801.07055}
}
```
### Contributions
Thanks to [@frankier](https://github.com/frankier) for adding this dataset. |