Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
banking77 / README.md
system's picture
system HF staff
Update files from the datasets library (from 1.18.0)
df1f78d
|
raw
history blame
9.78 kB
---
annotations_creators:
- expert-generated
extended:
- original
language_creators:
- expert-generated
languages:
- en
licenses:
- cc-by-4-0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- intent-classification
- multi-class-classification
paperswithcode_id: null
pretty_name: BANKING77
---
# Dataset Card for BANKING77
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Github](https://github.com/PolyAI-LDN/task-specific-datasets)
- **Repository:** [Github](https://github.com/PolyAI-LDN/task-specific-datasets)
- **Paper:** [ArXiv](https://arxiv.org/abs/2003.04807)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
Dataset composed of online banking queries annotated with their corresponding intents.
BANKING77 dataset provides a very fine-grained set of intents in a banking domain.
It comprises 13,083 customer service queries labeled with 77 intents.
It focuses on fine-grained single-domain intent detection.
### Supported Tasks and Leaderboards
Intent classification, intent detection
### Languages
English
## Dataset Structure
### Data Instances
An example of 'train' looks as follows:
```
{
'label': 11, # integer label corresponding to "card_arrival" intent
'text': 'I am still waiting on my card?'
}
```
### Data Fields
- `text`: a string feature.
- `label`: One of classification labels (0-76) corresponding to unique intents.
Intent names are mapped to `label` in the following way:
| label | intent (category) |
|---:|:-------------------------------------------------|
| 0 | activate_my_card |
| 1 | age_limit |
| 2 | apple_pay_or_google_pay |
| 3 | atm_support |
| 4 | automatic_top_up |
| 5 | balance_not_updated_after_bank_transfer |
| 6 | balance_not_updated_after_cheque_or_cash_deposit |
| 7 | beneficiary_not_allowed |
| 8 | cancel_transfer |
| 9 | card_about_to_expire |
| 10 | card_acceptance |
| 11 | card_arrival |
| 12 | card_delivery_estimate |
| 13 | card_linking |
| 14 | card_not_working |
| 15 | card_payment_fee_charged |
| 16 | card_payment_not_recognised |
| 17 | card_payment_wrong_exchange_rate |
| 18 | card_swallowed |
| 19 | cash_withdrawal_charge |
| 20 | cash_withdrawal_not_recognised |
| 21 | change_pin |
| 22 | compromised_card |
| 23 | contactless_not_working |
| 24 | country_support |
| 25 | declined_card_payment |
| 26 | declined_cash_withdrawal |
| 27 | declined_transfer |
| 28 | direct_debit_payment_not_recognised |
| 29 | disposable_card_limits |
| 30 | edit_personal_details |
| 31 | exchange_charge |
| 32 | exchange_rate |
| 33 | exchange_via_app |
| 34 | extra_charge_on_statement |
| 35 | failed_transfer |
| 36 | fiat_currency_support |
| 37 | get_disposable_virtual_card |
| 38 | get_physical_card |
| 39 | getting_spare_card |
| 40 | getting_virtual_card |
| 41 | lost_or_stolen_card |
| 42 | lost_or_stolen_phone |
| 43 | order_physical_card |
| 44 | passcode_forgotten |
| 45 | pending_card_payment |
| 46 | pending_cash_withdrawal |
| 47 | pending_top_up |
| 48 | pending_transfer |
| 49 | pin_blocked |
| 50 | receiving_money |
| 51 | Refund_not_showing_up |
| 52 | request_refund |
| 53 | reverted_card_payment? |
| 54 | supported_cards_and_currencies |
| 55 | terminate_account |
| 56 | top_up_by_bank_transfer_charge |
| 57 | top_up_by_card_charge |
| 58 | top_up_by_cash_or_cheque |
| 59 | top_up_failed |
| 60 | top_up_limits |
| 61 | top_up_reverted |
| 62 | topping_up_by_card |
| 63 | transaction_charged_twice |
| 64 | transfer_fee_charged |
| 65 | transfer_into_account |
| 66 | transfer_not_received_by_recipient |
| 67 | transfer_timing |
| 68 | unable_to_verify_identity |
| 69 | verify_my_identity |
| 70 | verify_source_of_funds |
| 71 | verify_top_up |
| 72 | virtual_card_not_working |
| 73 | visa_or_mastercard |
| 74 | why_verify_identity |
| 75 | wrong_amount_of_cash_received |
| 76 | wrong_exchange_rate_for_cash_withdrawal |
### Data Splits
| Dataset statistics | Train | Test |
| --- | --- | --- |
| Number of examples | 10 003 | 3 080 |
| Average character length | 59.5 | 54.2 |
| Number of intents | 77 | 77 |
| Number of domains | 1 | 1 |
## Dataset Creation
### Curation Rationale
Previous intent detection datasets such as Web Apps, Ask Ubuntu, the Chatbot Corpus or SNIPS are limited to small number of classes (<10), which oversimplifies the intent detection task and does not emulate the true environment of commercial systems. Although there exist large scale *multi-domain* datasets ([HWU64](https://github.com/xliuhw/NLU-Evaluation-Data) and [CLINC150](https://github.com/clinc/oos-eval)), the examples per each domain may not sufficiently capture the full complexity of each domain as encountered "in the wild". This dataset tries to fill the gap and provides a very fine-grained set of intents in a *single-domain* i.e. **banking**. Its focus on fine-grained single-domain intent detection makes it complementary to the other two multi-domain datasets.
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
The dataset does not contain any additional annotations.
#### Who are the annotators?
[N/A]
### Personal and Sensitive Information
[N/A]
## Considerations for Using the Data
### Social Impact of Dataset
The purpose of this dataset it to help develop better intent detection systems.
Any comprehensive intent detection evaluation should involve both coarser-grained multi-domain datasets and a fine-grained single-domain dataset such as BANKING77.
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[PolyAI](https://github.com/PolyAI-LDN)
### Licensing Information
Creative Commons Attribution 4.0 International
### Citation Information
```
@inproceedings{Casanueva2020,
author = {I{\~{n}}igo Casanueva and Tadas Temcinas and Daniela Gerz and Matthew Henderson and Ivan Vulic},
title = {Efficient Intent Detection with Dual Sentence Encoders},
year = {2020},
month = {mar},
note = {Data available at https://github.com/PolyAI-LDN/task-specific-datasets},
url = {https://arxiv.org/abs/2003.04807},
booktitle = {Proceedings of the 2nd Workshop on NLP for ConvAI - ACL 2020}
}
```
### Contributions
Thanks to [@dkajtoch](https://github.com/dkajtoch) for adding this dataset.