Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 9,781 Bytes
a76ff36
 
 
 
 
 
 
 
 
 
 
 
 
 
07c0879
a76ff36
 
 
 
 
 
 
07c0879
df1f78d
a76ff36
 
 
 
 
07c0879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a76ff36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
annotations_creators:
- expert-generated
extended:
- original
language_creators:
- expert-generated
languages:
- en
licenses:
- cc-by-4-0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- intent-classification
- multi-class-classification
paperswithcode_id: null
pretty_name: BANKING77
---

# Dataset Card for BANKING77

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Github](https://github.com/PolyAI-LDN/task-specific-datasets)
- **Repository:** [Github](https://github.com/PolyAI-LDN/task-specific-datasets)
- **Paper:** [ArXiv](https://arxiv.org/abs/2003.04807)
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

Dataset composed of online banking queries annotated with their corresponding intents.

BANKING77 dataset provides a very fine-grained set of intents in a banking domain.
It comprises 13,083 customer service queries labeled with 77 intents. 
It focuses on fine-grained single-domain intent detection.

### Supported Tasks and Leaderboards

Intent classification, intent detection

### Languages

English

## Dataset Structure

### Data Instances

An example of 'train' looks as follows:
```
{
  'label': 11, # integer label corresponding to "card_arrival" intent
  'text': 'I am still waiting on my card?'
}
```

### Data Fields

- `text`: a string feature.
- `label`: One of classification labels (0-76) corresponding to unique intents.

Intent names are mapped to `label` in the following way:

| label | intent (category)                                           |
|---:|:-------------------------------------------------|
|  0 | activate_my_card                                 |
|  1 | age_limit                                        |
|  2 | apple_pay_or_google_pay                          |
|  3 | atm_support                                      |
|  4 | automatic_top_up                                 |
|  5 | balance_not_updated_after_bank_transfer          |
|  6 | balance_not_updated_after_cheque_or_cash_deposit |
|  7 | beneficiary_not_allowed                          |
|  8 | cancel_transfer                                  |
|  9 | card_about_to_expire                             |
| 10 | card_acceptance                                  |
| 11 | card_arrival                                     |
| 12 | card_delivery_estimate                           |
| 13 | card_linking                                     |
| 14 | card_not_working                                 |
| 15 | card_payment_fee_charged                         |
| 16 | card_payment_not_recognised                      |
| 17 | card_payment_wrong_exchange_rate                 |
| 18 | card_swallowed                                   |
| 19 | cash_withdrawal_charge                           |
| 20 | cash_withdrawal_not_recognised                   |
| 21 | change_pin                                       |
| 22 | compromised_card                                 |
| 23 | contactless_not_working                          |
| 24 | country_support                                  |
| 25 | declined_card_payment                            |
| 26 | declined_cash_withdrawal                         |
| 27 | declined_transfer                                |
| 28 | direct_debit_payment_not_recognised              |
| 29 | disposable_card_limits                           |
| 30 | edit_personal_details                            |
| 31 | exchange_charge                                  |
| 32 | exchange_rate                                    |
| 33 | exchange_via_app                                 |
| 34 | extra_charge_on_statement                        |
| 35 | failed_transfer                                  |
| 36 | fiat_currency_support                            |
| 37 | get_disposable_virtual_card                      |
| 38 | get_physical_card                                |
| 39 | getting_spare_card                               |
| 40 | getting_virtual_card                             |
| 41 | lost_or_stolen_card                              |
| 42 | lost_or_stolen_phone                             |
| 43 | order_physical_card                              |
| 44 | passcode_forgotten                               |
| 45 | pending_card_payment                             |
| 46 | pending_cash_withdrawal                          |
| 47 | pending_top_up                                   |
| 48 | pending_transfer                                 |
| 49 | pin_blocked                                      |
| 50 | receiving_money                                  |
| 51 | Refund_not_showing_up                            |
| 52 | request_refund                                   |
| 53 | reverted_card_payment?                           |
| 54 | supported_cards_and_currencies                   |
| 55 | terminate_account                                |
| 56 | top_up_by_bank_transfer_charge                   |
| 57 | top_up_by_card_charge                            |
| 58 | top_up_by_cash_or_cheque                         |
| 59 | top_up_failed                                    |
| 60 | top_up_limits                                    |
| 61 | top_up_reverted                                  |
| 62 | topping_up_by_card                               |
| 63 | transaction_charged_twice                        |
| 64 | transfer_fee_charged                             |
| 65 | transfer_into_account                            |
| 66 | transfer_not_received_by_recipient               |
| 67 | transfer_timing                                  |
| 68 | unable_to_verify_identity                        |
| 69 | verify_my_identity                               |
| 70 | verify_source_of_funds                           |
| 71 | verify_top_up                                    |
| 72 | virtual_card_not_working                         |
| 73 | visa_or_mastercard                               |
| 74 | why_verify_identity                              |
| 75 | wrong_amount_of_cash_received                    |
| 76 | wrong_exchange_rate_for_cash_withdrawal          |

### Data Splits

| Dataset statistics | Train | Test |
| --- | --- | --- |
| Number of examples | 10 003 | 3 080 |
| Average character length | 59.5 | 54.2 |
| Number of intents | 77 | 77 |
| Number of domains | 1 | 1 |

## Dataset Creation

### Curation Rationale

Previous intent detection datasets such as Web Apps, Ask Ubuntu, the Chatbot Corpus or SNIPS are limited to small number of classes (<10), which oversimplifies the intent detection task and does not emulate the true environment of commercial systems. Although there exist large scale *multi-domain* datasets ([HWU64](https://github.com/xliuhw/NLU-Evaluation-Data) and [CLINC150](https://github.com/clinc/oos-eval)), the examples per each domain may not sufficiently capture the full complexity of each domain as encountered "in the wild". This dataset tries to fill the gap and provides a very fine-grained set of intents in a *single-domain* i.e. **banking**. Its focus on fine-grained single-domain intent detection makes it complementary to the other two multi-domain datasets.

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

The dataset does not contain any additional annotations.

#### Who are the annotators?

[N/A]

### Personal and Sensitive Information

[N/A]

## Considerations for Using the Data

### Social Impact of Dataset

The purpose of this dataset it to help develop better intent detection systems.

Any comprehensive intent detection evaluation should involve both coarser-grained multi-domain datasets and a fine-grained single-domain dataset such as BANKING77.

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[PolyAI](https://github.com/PolyAI-LDN)

### Licensing Information

Creative Commons Attribution 4.0 International

### Citation Information

```
@inproceedings{Casanueva2020,
    author      = {I{\~{n}}igo Casanueva and Tadas Temcinas and Daniela Gerz and Matthew Henderson and Ivan Vulic},
    title       = {Efficient Intent Detection with Dual Sentence Encoders},
    year        = {2020},
    month       = {mar},
    note        = {Data available at https://github.com/PolyAI-LDN/task-specific-datasets},
    url         = {https://arxiv.org/abs/2003.04807},
    booktitle   = {Proceedings of the 2nd Workshop on NLP for ConvAI - ACL 2020}
}
```

### Contributions

Thanks to [@dkajtoch](https://github.com/dkajtoch) for adding this dataset.