metadata
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: latin
num_bytes: 114634
num_examples: 500
- name: cyrillic
num_bytes: 143553
num_examples: 500
download_size: 99179
dataset_size: 258187
configs:
- config_name: default
data_files:
- split: latin
path: data/latin-*
- split: cyrillic
path: data/cyrillic-*
license: apache-2.0
task_categories:
- token-classification
language:
- uz
tags:
- pos
- uz
- upos
pretty_name: uzbekpos
size_categories:
- n<1K
Dataset Card for "uzbekpos"
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: Uzbek UD
- Repository: UD_Uzbek-UT (conllu format)
- Paper: BBPOS: BERT-based Part-of-Speech Tagging for Uzbek
- Point of Contact: latofatbobojonova@gmail.com or arofat.akhundjanova@gmail.com
- Size of downloaded dataset files: 99.2 kB
Dataset Summary
Uzbek POS: First UPOS tagged dataset for Part-of-Speech tagging task
This dataset is an annotated dataset for POS tagging. It contains 250 sample sentences collected from news outlets and fictional books respectively. The dataset is presented in both Uzbek scripts i.e., Latin and Cyrillic. The annotation was done manually according to UPOS tagset.
Languages
- Northern Uzbek (a.k.a Uzbek)
Dataset Structure
Data Instances
- Size of downloaded dataset files: 99.2 kB
- Size of the generated dataset: 99.2 kB
- Total amount of disk used: 99.2 kB
An example of 'latin' looks as follows.
{
'id': 0,
'tokens': "['Doimiy', 'g‘ala-g‘ovur', ',', 'to‘lib-toshgan', 'peshtaxtalar', ',', 'mahsulotlarning', 'o‘ziga', 'xos', 'qorishiq', 'isi', '…']",
'pos_tags': '[0, 7, 12, 15, 7, 12, 7, 10, 0, 0, 7, 12]'
}
Data Fields
The data fields are the same among all splits:
id
(string
): ID of the example.tokens
(list
ofstring
): Tokens of the example text.pos_tags
(list
of class labels): POS tags of the tokens, with possible values:- 0:
ADJ
- 1:
ADP
- 2:
ADV
- 3:
AUX
- 4:
CCONJ
- 5:
DET
- 6:
INTJ
- 7:
NOUN
- 8:
NUM
- 9:
PART
- 10:
PRON
- 11:
PROPN
- 12:
PUNCT
- 13:
SCONJ
- 14:
SYM
- 15:
VERB
- 16:
X
- 0:
Data Splits
Dataset consists of two splits according to its written script.
name | |
---|---|
latin | 500 |
cyrillic | 500 |
Dataset Creation
Source Data
- news articles:
- fictional books:
- “Og‘riq Tishlar” and “Dahshat” by Abdulla Qahhor
- “Shum Bola” and “Yodgor” by G‘afur G‘ulom
- “Sofiya”, “Hazrati Hizr Izidan”, “Bibi Salima va Boqiy Darbadar”, “Olisdagi Urushning Aks-Sadosi” and “Genetik” by Isajon Sulton
- “Buxoro, Buxoro, Buxoro. . . ”, “Ozodlik” and “Lobarim Mening. . . ” by Javlon Jovliyev
- “Ko‘k Tog‘”, “Insonga Qulluq Qiladurmen”, “Fano va Baqo” and “Chodirxayol” by Asqar Muxtor
- “Ajinasi Bor Yo‘llar” by Anvar Obidjon
- “Kecha va Kunduz” and “Qor Qo‘ynida Lola” by Cho‘lpon.
Initial Data Collection and Normalization
All sentences were handpicked to ensure the quality of the data.
Annotations
Annotation process
Manual
Who are the annotators?
Arofat Akhundjanova (M.Sc. Language Science and Technology, Saarland University)
Citation Information
@inproceedings{bobojonova-etal-2025-bbpos,
title = "{BBPOS}: {BERT}-based Part-of-Speech Tagging for {U}zbek",
author = "Bobojonova, Latofat and
Akhundjanova, Arofat and
Ostheimer, Phil Sidney and
Fellenz, Sophie",
editor = "Hettiarachchi, Hansi and
Ranasinghe, Tharindu and
Rayson, Paul and
Mitkov, Ruslan and
Gaber, Mohamed and
Premasiri, Damith and
Tan, Fiona Anting and
Uyangodage, Lasitha",
booktitle = "Proceedings of the First Workshop on Language Models for Low-Resource Languages",
month = jan,
year = "2025",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.loreslm-1.23/",
pages = "287--293",
abstract = "This paper advances NLP research for the low-resource Uzbek language by evaluating two previously untested monolingual Uzbek BERT models on the part-of-speech (POS) tagging task and introducing the first publicly available UPOS-tagged benchmark dataset for Uzbek. Our fine-tuned models achieve 91{\%} average accuracy, outperforming the baseline multi-lingual BERT as well as the rule-based tagger. Notably, these models capture intermediate POS changes through affixes and demonstrate context sensitivity, unlike existing rule-based taggers."
}