File size: 11,062 Bytes
5f19eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30864d0
 
5f19eb0
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from collections import defaultdict
import os
import json
import csv

import datasets

_NAME="samromur_milljon"
_VERSION="1.0.0"
_AUDIO_EXTENSIONS=".flac"

_DESCRIPTION = """
Samrómur Milljón consists of approximately 1 million of speech recordings (967 hours) collected through the platform samromur.is; the transcripts accompanying these recordings were automatically verified using various ASR systems such as: Wav2Vec, Whisper and NeMo.
"""

_CITATION = """
@misc{menasamromurmilljon2023,
      title={Samrómur Milljón, Audio and Transcriptions}, 
      author={Hernández Mena, Carlos Daniel and Guðnason, Jón},
      publisher={Reykjavík University}
      year={2023},
      url={https://huggingface.co/datasets/language-and-voice-lab/samromur_milljon},
}
"""

_HOMEPAGE = "https://huggingface.co/datasets/language-and-voice-lab/samromur_milljon"

_LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/"

_BASE_DATA_DIR = "corpus/"

_METADATA_FEM_LT_18_YRS   = os.path.join(_BASE_DATA_DIR,"files","metadata_fem_lt_18_yrs.tsv")
_METADATA_FEM_18TO49_YRS  = os.path.join(_BASE_DATA_DIR,"files","metadata_fem_18to49_yrs.tsv")
_METADATA_FEM_GT_49_YRS   = os.path.join(_BASE_DATA_DIR,"files","metadata_fem_gt_49_yrs.tsv")

_METADATA_MALE_LT_18_YRS  = os.path.join(_BASE_DATA_DIR,"files","metadata_male_lt_18_yrs.tsv")
_METADATA_MALE_18TO49_YRS = os.path.join(_BASE_DATA_DIR,"files","metadata_male_18to49_yrs.tsv")
_METADATA_MALE_GT_49_YRS  = os.path.join(_BASE_DATA_DIR,"files","metadata_male_gt_49_yrs.tsv")

_METADATA_OTHER = os.path.join(_BASE_DATA_DIR,"files","metadata_other.tsv")

_TARS_FEM_LT_18_YRS   = os.path.join(_BASE_DATA_DIR,"files","tars_fem_lt_18_yrs.paths")
_TARS_FEM_18TO49_YRS  = os.path.join(_BASE_DATA_DIR,"files","tars_fem_18to49_yrs.paths")
_TARS_FEM_GT_49_YRS   = os.path.join(_BASE_DATA_DIR,"files","tars_fem_gt_49_yrs.paths")

_TARS_MALE_LT_18_YRS  = os.path.join(_BASE_DATA_DIR,"files","tars_male_lt_18_yrs.paths")
_TARS_MALE_18TO49_YRS = os.path.join(_BASE_DATA_DIR,"files","tars_male_18to49_yrs.paths")
_TARS_MALE_GT_49_YRS  = os.path.join(_BASE_DATA_DIR,"files","tars_male_gt_49_yrs.paths")

_TARS_OTHER = os.path.join(_BASE_DATA_DIR,"files","tars_other.paths")

class SamromurMilljonConfig(datasets.BuilderConfig):
    """BuilderConfig for The Samrómur Milljón"""

    def __init__(self, name, **kwargs):
        name=_NAME
        super().__init__(name=name, **kwargs)

class SamromurMilljon(datasets.GeneratorBasedBuilder):
    """Samrómur Milljón"""

    VERSION = datasets.Version(_VERSION)
    BUILDER_CONFIGS = [
        SamromurMilljonConfig(
            name=_NAME,
            version=datasets.Version(_VERSION),
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "audio_id": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16000),
                "speaker_id": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "age": datasets.Value("string"),
                "duration": datasets.Value("float32"),
                "verified_with": datasets.Value("string"),
                "normalized_text": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        metadata_fem_lt_18_yrs=dl_manager.download_and_extract(_METADATA_FEM_LT_18_YRS)
        metadata_fem_18to49_yrs=dl_manager.download_and_extract(_METADATA_FEM_18TO49_YRS)
        metadata_fem_gt_49_yrs=dl_manager.download_and_extract(_METADATA_FEM_GT_49_YRS)

        metadata_male_lt_18_yrs=dl_manager.download_and_extract(_METADATA_MALE_LT_18_YRS)
        metadata_male_18to49_yrs=dl_manager.download_and_extract(_METADATA_MALE_18TO49_YRS)
        metadata_male_gt_49_yrs=dl_manager.download_and_extract(_METADATA_MALE_GT_49_YRS)

        metadata_other=dl_manager.download_and_extract(_METADATA_OTHER)
        
        tars_fem_lt_18_yrs=dl_manager.download_and_extract(_TARS_FEM_LT_18_YRS)
        tars_fem_18to49_yrs=dl_manager.download_and_extract(_TARS_FEM_18TO49_YRS)
        tars_fem_gt_49_yrs=dl_manager.download_and_extract(_TARS_FEM_GT_49_YRS)

        tars_male_lt_18_yrs=dl_manager.download_and_extract(_TARS_MALE_LT_18_YRS)
        tars_male_18to49_yrs=dl_manager.download_and_extract(_TARS_MALE_18TO49_YRS)
        tars_male_gt_49_yrs=dl_manager.download_and_extract(_TARS_MALE_GT_49_YRS)

        tars_other=dl_manager.download_and_extract(_TARS_OTHER)
       
        hash_tar_files=defaultdict(dict)
        with open(tars_fem_lt_18_yrs,'r') as f:
            hash_tar_files['fem_lt_18_yrs']=[path.replace('\n','') for path in f]
        with open(tars_fem_18to49_yrs,'r') as f:
            hash_tar_files['fem_18to49_yrs']=[path.replace('\n','') for path in f]
        with open(tars_fem_gt_49_yrs,'r') as f:
            hash_tar_files['fem_gt_49_yrs']=[path.replace('\n','') for path in f]
            
        with open(tars_male_lt_18_yrs,'r') as f:
            hash_tar_files['male_lt_18_yrs']=[path.replace('\n','') for path in f]
        with open(tars_male_18to49_yrs,'r') as f:
            hash_tar_files['male_18to49_yrs']=[path.replace('\n','') for path in f]
        with open(tars_male_gt_49_yrs,'r') as f:
            hash_tar_files['male_gt_49_yrs']=[path.replace('\n','') for path in f]
            
        with open(tars_other,'r') as f:
            hash_tar_files['other']=[path.replace('\n','') for path in f]

        hash_meta_paths={"fem_lt_18_yrs":metadata_fem_lt_18_yrs,
        "fem_18to49_yrs":metadata_fem_18to49_yrs,
        "fem_gt_49_yrs":metadata_fem_gt_49_yrs,
        "male_lt_18_yrs":metadata_male_lt_18_yrs,
        "male_18to49_yrs":metadata_male_18to49_yrs,
        "male_gt_49_yrs":metadata_male_gt_49_yrs,
        "other":metadata_other}

        audio_paths = dl_manager.download(hash_tar_files)
        
        splits=["fem_lt_18_yrs","fem_18to49_yrs","fem_gt_49_yrs","male_lt_18_yrs","male_18to49_yrs","male_gt_49_yrs","other"]
        local_extracted_audio_paths = (
            dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
            {
                split:[None] * len(audio_paths[split]) for split in splits
            }
        )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
        return [
            datasets.SplitGenerator(
                name="female_lt_18_yrs",
                gen_kwargs={
                    "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["fem_lt_18_yrs"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["fem_lt_18_yrs"],
                    "metadata_paths": hash_meta_paths["fem_lt_18_yrs"],
                }
            ),
            datasets.SplitGenerator(
                name="female_18to49_yrs",
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["fem_18to49_yrs"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["fem_18to49_yrs"],
                    "metadata_paths": hash_meta_paths["fem_18to49_yrs"],
                }
            ),
            datasets.SplitGenerator(
                name="female_gt_49_yrs",
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["fem_gt_49_yrs"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["fem_gt_49_yrs"],
                    "metadata_paths": hash_meta_paths["fem_gt_49_yrs"],
                }
            ),
            datasets.SplitGenerator(
                name="male_lt_18_yrs",
                gen_kwargs={
                    "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["male_lt_18_yrs"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["male_lt_18_yrs"],
                    "metadata_paths": hash_meta_paths["male_lt_18_yrs"],
                }
            ),
            datasets.SplitGenerator(
                name="male_18to49_yrs",
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["male_18to49_yrs"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["male_18to49_yrs"],
                    "metadata_paths": hash_meta_paths["male_18to49_yrs"],
                }
            ),
            datasets.SplitGenerator(
                name="male_gt_49_yrs",
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["male_gt_49_yrs"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["male_gt_49_yrs"],
                    "metadata_paths": hash_meta_paths["male_gt_49_yrs"],
                }
            ),
            datasets.SplitGenerator(
                name="other",
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["other"],
                    "metadata_paths": hash_meta_paths["other"],
                }
            ),  
        ]

    def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):

        features = ["speaker_id","gender","age","duration","verified_with","normalized_text"]
        
        with open(metadata_paths) as f:
            metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}

        for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
            for audio_filename, audio_file in audio_archive:
                #audio_id = audio_filename.split(os.sep)[-1].split(_AUDIO_EXTENSIONS)[0]
                audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
                path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
                                        
                yield audio_id, {
                    "audio_id": audio_id,
                    **{feature: metadata[audio_id][feature] for feature in features},
                    "audio": {"path": path, "bytes": audio_file.read()},
                }