Datasets:

License:
File size: 9,676 Bytes
aee200a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from pointcept.datasets.preprocessing.scannet.meta_data.scannet200_constants import (
    CLASS_LABELS_200,
)


_base_ = ["../_base_/default_runtime.py"]

# misc custom setting
batch_size = 2  # bs: total bs in all gpus
num_worker = 24
mix_prob = 0.8
empty_cache = False
enable_amp = True

# model settings
model = dict(
    type="DefaultSegmentorV2",
    num_classes=200,
    backbone_out_channels=64,
    backbone=dict(
        type="PT-v3m1",
        in_channels=6,
        order=["z", "z-trans", "hilbert", "hilbert-trans"],
        stride=(2, 2, 2, 2),
        enc_depths=(2, 2, 2, 6, 2),
        enc_channels=(32, 64, 128, 256, 512),
        enc_num_head=(2, 4, 8, 16, 32),
        enc_patch_size=(1024, 1024, 1024, 1024, 1024),
        dec_depths=(2, 2, 2, 2),
        dec_channels=(64, 64, 128, 256),
        dec_num_head=(4, 4, 8, 16),
        dec_patch_size=(1024, 1024, 1024, 1024),
        mlp_ratio=4,
        qkv_bias=True,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        drop_path=0.3,
        shuffle_orders=True,
        pre_norm=True,
        enable_rpe=False,
        enable_flash=True,
        upcast_attention=False,
        upcast_softmax=False,
        cls_mode=False,
        pdnorm_bn=False,
        pdnorm_ln=False,
        pdnorm_decouple=True,
        pdnorm_adaptive=False,
        pdnorm_affine=True,
        pdnorm_conditions=("ScanNet", "S3DIS", "Structured3D"),
    ),
    criteria=[
        dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1),
        dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1),
    ],
)

# scheduler settings
epoch = 800
optimizer = dict(type="AdamW", lr=0.006, weight_decay=0.05)
scheduler = dict(
    type="OneCycleLR",
    max_lr=[0.006, 0.0006],
    pct_start=0.05,
    anneal_strategy="cos",
    div_factor=10.0,
    final_div_factor=1000.0,
)
param_dicts = [dict(keyword="block", lr=0.0006)]

# dataset settings
dataset_type = "ARKitScenesLabelMakerScanNet200Dataset"
data_root = "data/alc"

data = dict(
    num_classes=200,
    ignore_index=-1,
    names=CLASS_LABELS_200,
    train=dict(
        type=dataset_type,
        split="train",
        data_root=data_root,
        transform=[
            dict(type="CenterShift", apply_z=True),
            dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
            # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
            dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
            dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
            dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
            dict(type="RandomScale", scale=[0.9, 1.1]),
            # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
            dict(type="RandomFlip", p=0.5),
            dict(type="RandomJitter", sigma=0.005, clip=0.02),
            dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
            dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
            dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
            dict(type="ChromaticJitter", p=0.95, std=0.05),
            # dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
            # dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
            dict(
                type="GridSample",
                grid_size=0.02,
                hash_type="fnv",
                mode="train",
                return_grid_coord=True,
            ),
            dict(type="SphereCrop", point_max=102400, mode="random"),
            dict(type="CenterShift", apply_z=False),
            dict(type="NormalizeColor"),
            # dict(type="ShufflePoint"),
            dict(type="ToTensor"),
            dict(
                type="Collect",
                keys=("coord", "grid_coord", "segment"),
                feat_keys=("color", "normal"),
            ),
        ],
        test_mode=False,
    ),
    val=dict(
        type=dataset_type,
        split="val",
        data_root=data_root,
        transform=[
            dict(type="CenterShift", apply_z=True),
            dict(
                type="GridSample",
                grid_size=0.02,
                hash_type="fnv",
                mode="train",
                return_grid_coord=True,
            ),
            dict(type="CenterShift", apply_z=False),
            dict(type="NormalizeColor"),
            dict(type="ToTensor"),
            dict(
                type="Collect",
                keys=("coord", "grid_coord", "segment"),
                feat_keys=("color", "normal"),
            ),
        ],
        test_mode=False,
    ),
    test=dict(
        type=dataset_type,
        split="val",
        data_root=data_root,
        transform=[
            dict(type="CenterShift", apply_z=True),
            dict(type="NormalizeColor"),
        ],
        test_mode=True,
        test_cfg=dict(
            voxelize=dict(
                type="GridSample",
                grid_size=0.02,
                hash_type="fnv",
                mode="test",
                keys=("coord", "color", "normal"),
                return_grid_coord=True,
            ),
            crop=None,
            post_transform=[
                dict(type="CenterShift", apply_z=False),
                dict(type="ToTensor"),
                dict(
                    type="Collect",
                    keys=("coord", "grid_coord", "index"),
                    feat_keys=("color", "normal"),
                ),
            ],
            aug_transform=[
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[0],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[3 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[0],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[0.95, 0.95]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[0.95, 0.95]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[0.95, 0.95]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[3 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[0.95, 0.95]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[0],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[1.05, 1.05]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[1.05, 1.05]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[1.05, 1.05]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[3 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[1.05, 1.05]),
                ],
                [dict(type="RandomFlip", p=1)],
            ],
        ),
    ),
)