File size: 9,405 Bytes
125e01a
cf6b8fb
 
527ac5a
a0c5756
cf6b8fb
 
 
 
 
 
4676410
cf6b8fb
 
 
 
 
 
 
 
 
6717a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f15acf
 
 
6717a11
 
 
 
 
125e01a
 
 
 
 
 
 
dcb1272
125e01a
 
 
 
dcb1272
125e01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc63c15
125e01a
cf6b8fb
 
125e01a
795bdc3
 
 
125e01a
dc63c15
125e01a
 
 
 
 
 
 
 
 
dcb1272
125e01a
 
 
dc63c15
125e01a
 
 
dc63c15
125e01a
dc63c15
125e01a
 
 
795bdc3
 
 
125e01a
 
 
 
 
 
 
 
795bdc3
 
 
125e01a
 
 
 
 
 
dc63c15
125e01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb1272
125e01a
 
 
 
 
 
 
 
 
 
 
 
 
dc63c15
125e01a
dc63c15
125e01a
 
 
dc63c15
125e01a
dcb1272
 
 
 
 
 
125e01a
 
dc63c15
125e01a
dcb1272
 
 
 
 
 
125e01a
 
dc63c15
125e01a
 
 
dc63c15
125e01a
dc63c15
125e01a
 
 
dc63c15
125e01a
 
 
dc63c15
125e01a
 
 
dc63c15
125e01a
dc63c15
125e01a
 
 
dc63c15
125e01a
 
 
dc63c15
125e01a
 
cf6b8fb
125e01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf6b8fb
125e01a
 
 
 
 
6717a11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
---
annotations_creators:
- found
language:
- en
language_creators:
- found
license:
- unknown
multilinguality:
- monolingual
pretty_name: SearchQA
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: searchqa
dataset_info:
- config_name: raw_jeopardy
  features:
  - name: category
    dtype: string
  - name: air_date
    dtype: string
  - name: question
    dtype: string
  - name: value
    dtype: string
  - name: answer
    dtype: string
  - name: round
    dtype: string
  - name: show_number
    dtype: int32
  - name: search_results
    sequence:
    - name: urls
      dtype: string
    - name: snippets
      dtype: string
    - name: titles
      dtype: string
    - name: related_links
      dtype: string
  splits:
  - name: train
    num_bytes: 7770972348
    num_examples: 216757
  download_size: 3314386157
  dataset_size: 7770972348
- config_name: train_test_val
  features:
  - name: category
    dtype: string
  - name: air_date
    dtype: string
  - name: question
    dtype: string
  - name: value
    dtype: string
  - name: answer
    dtype: string
  - name: round
    dtype: string
  - name: show_number
    dtype: int32
  - name: search_results
    sequence:
    - name: urls
      dtype: string
    - name: snippets
      dtype: string
    - name: titles
      dtype: string
    - name: related_links
      dtype: string
  splits:
  - name: train
    num_bytes: 5303005740
    num_examples: 151295
  - name: test
    num_bytes: 1466749978
    num_examples: 43228
  - name: validation
    num_bytes: 740962715
    num_examples: 21613
  download_size: 3148550732
  dataset_size: 7510718433
---

# Dataset Card for "search_qa"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** https://github.com/nyu-dl/dl4ir-searchQA
- **Paper:** [SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine](https://arxiv.org/abs/1704.05179)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 6.46 GB
- **Size of the generated dataset:** 15.28 GB
- **Total amount of disk used:** 21.74 GB

### Dataset Summary

We publicly release a new large-scale dataset, called SearchQA, for machine comprehension, or question-answering. Unlike recently released datasets, such as DeepMind
CNN/DailyMail and SQuAD, the proposed SearchQA was constructed to reflect a full pipeline of general question-answering. That is, we start not from an existing article
and generate a question-answer pair, but start from an existing question-answer pair, crawled from J! Archive, and augment it with text snippets retrieved by Google.
Following this approach, we built SearchQA, which consists of more than 140k question-answer pairs with each pair having 49.6 snippets on average. Each question-answer-context
 tuple of the SearchQA comes with additional meta-data such as the snippet's URL, which we believe will be valuable resources for future research. We conduct human evaluation
 as well as test two baseline methods, one simple word selection and the other deep learning based, on the SearchQA. We show that there is a meaningful gap between the human
 and machine performances. This suggests that the proposed dataset could well serve as a benchmark for question-answering.

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

#### raw_jeopardy

- **Size of downloaded dataset files:** 3.31 GB
- **Size of the generated dataset:** 7.77 GB
- **Total amount of disk used:** 11.09 GB

An example of 'train' looks as follows.
```

```

#### train_test_val

- **Size of downloaded dataset files:** 3.15 GB
- **Size of the generated dataset:** 7.51 GB
- **Total amount of disk used:** 10.66 GB

An example of 'validation' looks as follows.
```

```

### Data Fields

The data fields are the same among all splits.

#### raw_jeopardy
- `category`: a `string` feature.
- `air_date`: a `string` feature.
- `question`: a `string` feature.
- `value`: a `string` feature.
- `answer`: a `string` feature.
- `round`: a `string` feature.
- `show_number`: a `int32` feature.
- `search_results`: a dictionary feature containing:
  - `urls`: a `string` feature.
  - `snippets`: a `string` feature.
  - `titles`: a `string` feature.
  - `related_links`: a `string` feature.

#### train_test_val
- `category`: a `string` feature.
- `air_date`: a `string` feature.
- `question`: a `string` feature.
- `value`: a `string` feature.
- `answer`: a `string` feature.
- `round`: a `string` feature.
- `show_number`: a `int32` feature.
- `search_results`: a dictionary feature containing:
  - `urls`: a `string` feature.
  - `snippets`: a `string` feature.
  - `titles`: a `string` feature.
  - `related_links`: a `string` feature.

### Data Splits

#### raw_jeopardy

|            |train |
|------------|-----:|
|raw_jeopardy|216757|

#### train_test_val

|              |train |validation|test |
|--------------|-----:|---------:|----:|
|train_test_val|151295|     21613|43228|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@article{DBLP:journals/corr/DunnSHGCC17,
    author    = {Matthew Dunn and
                Levent Sagun and
                Mike Higgins and
                V. Ugur G{"{u}}ney and
                Volkan Cirik and
                Kyunghyun Cho},
    title     = {SearchQA: {A} New Q{\&}A Dataset Augmented with Context from a
                Search Engine},
    journal   = {CoRR},
    volume    = {abs/1704.05179},
    year      = {2017},
    url       = {http://arxiv.org/abs/1704.05179},
    archivePrefix = {arXiv},
    eprint    = {1704.05179},
    timestamp = {Mon, 13 Aug 2018 16:47:09 +0200},
    biburl    = {https://dblp.org/rec/journals/corr/DunnSHGCC17.bib},
    bibsource = {dblp computer science bibliography, https://dblp.org}
}
```


### Contributions

Thanks to [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf) for adding this dataset.