Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Russian
Size:
10K - 100K
ArXiv:
License:
File size: 5,114 Bytes
358bdfe 64f4dc3 358bdfe 64f4dc3 358bdfe 5dcac8c 7a17e67 5dcac8c 358bdfe 5dcac8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
pretty_name: SberQuAD
annotations_creators:
- crowdsourced
language_creators:
- found
- crowdsourced
language:
- ru
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: sberquad
dataset_info:
features:
- name: id
dtype: int32
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
config_name: sberquad
splits:
- name: train
num_bytes: 71631661
num_examples: 45328
- name: validation
num_bytes: 7972977
num_examples: 5036
- name: test
num_bytes: 36397848
num_examples: 23936
download_size: 66047276
dataset_size: 116002486
---
# Dataset Card for sberquad
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Needs More Information]
- **Repository:** https://github.com/sberbank-ai/data-science-journey-2017
- **Paper:** https://arxiv.org/abs/1912.09723
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
Sber Question Answering Dataset (SberQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
Russian original analogue presented in Sberbank Data Science Journey 2017.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
Russian
## Dataset Structure
### Data Instances
```
{
"context": "Первые упоминания о строении человеческого тела встречаются в Древнем Египте...",
"id": 14754,
"qas": [
{
"id": 60544,
"question": "Где встречаются первые упоминания о строении человеческого тела?",
"answers": [{"answer_start": 60, "text": "в Древнем Египте"}],
}
]
}
```
### Data Fields
- id: a int32 feature
- title: a string feature
- context: a string feature
- question: a string feature
- answers: a dictionary feature containing:
- text: a string feature
- answer_start: a int32 feature
### Data Splits
| name |train |validation|test |
|----------|-----:|---------:|-----|
|plain_text|45328 | 5036 |23936|
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
```
@article{DBLP:journals/corr/abs-1912-09723,
author = {Pavel Efimov and
Leonid Boytsov and
Pavel Braslavski},
title = {SberQuAD - Russian Reading Comprehension Dataset: Description and
Analysis},
journal = {CoRR},
volume = {abs/1912.09723},
year = {2019},
url = {http://arxiv.org/abs/1912.09723},
eprinttype = {arXiv},
eprint = {1912.09723},
timestamp = {Fri, 03 Jan 2020 16:10:45 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1912-09723.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@alenusch](https://github.com/Alenush) for adding this dataset. |