Datasets:
File size: 3,964 Bytes
ce4a725 b4f4ace ce4a725 5ab001a ce4a725 5ab001a ce4a725 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import json
import random
import string
import warnings
from typing import Dict, List, Optional, Union
import datasets as ds
import pandas as pd
_CITATION = """
@InProceedings{Kurihara_nlp2020,
author = "鈴木正敏 and 鈴木潤 and 松田耕史 and ⻄田京介 and 井之上直也",
title = "JAQKET: クイズを題材にした日本語 QA データセットの構築",
booktitle = "言語処理学会第26回年次大会",
year = "2020",
url = "https://www.anlp.jp/proceedings/annual_meeting/2020/pdf_dir/P2-24.pdf"
note= "in Japanese"
"""
_DESCRIPTION = """\
JAQKET: JApanese Questions on Knowledge of EnTitie
"""
_HOMEPAGE = "https://sites.google.com/view/project-aio/dataset"
_LICENSE = """\
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
"""
_DESCRIPTION_CONFIGS = {
"v2.0": "v2.0",
}
_URLS = {
"v2.0": {
"train": "https://huggingface.co/datasets/kumapo/JAQKET/resolve/main/train_jaqket_59.350.json",
"valid": "https://huggingface.co/datasets/kumapo/JAQKET/resolve/main/dev_jaqket_59.350.json",
},
}
def dataset_info_v2() -> ds.Features:
features = ds.Features(
{
"qid": ds.Value("string"),
"question": ds.Value("string"),
"answers": ds.Sequence({
"text": ds.Value("string"),
"answer_start": ds.Value("int32"),
}),
"ctxs": ds.Sequence({
"id": ds.Value("string"),
"title": ds.Value("string"),
"text": ds.Value("string"),
"score": ds.Value("float32"),
"has_answer": ds.Value("bool"),
})
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
)
class JAQKET(ds.GeneratorBasedBuilder):
VERSION = ds.Version("0.1.0")
BUILDER_CONFIGS = [
ds.BuilderConfig(
name="v2.0",
version=VERSION,
description=_DESCRIPTION_CONFIGS["v2.0"],
),
]
def _info(self) -> ds.DatasetInfo:
if self.config.name == "v2.0":
return dataset_info_v2()
else:
raise ValueError(f"Invalid config name: {self.config.name}")
def _split_generators(self, dl_manager: ds.DownloadManager):
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={"file_path": file_paths["train"]},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION,
gen_kwargs={"file_path": file_paths["valid"]},
),
]
def _generate_examples(
self,
file_path: Optional[str] = None,
split_df: Optional[pd.DataFrame] = None,
):
if file_path is None:
raise ValueError(f"Invalid argument for {self.config.name}")
with open(file_path, "r") as rf:
json_data = json.load(rf)
for json_dict in json_data:
q_id = json_dict["qid"]
question = json_dict["question"]
answers = [
{"text": answer, "answer_start": -1 } # -1: dummy
for answer in json_dict["answers"]
]
ctxs = [
{
"id": ctx["id"],
"title": ctx["title"],
"text": ctx["text"],
"score": float(ctx["score"]),
"has_answer": ctx["has_answer"]
}
for ctx in json_dict["ctxs"]
]
example_dict = {
"qid": q_id,
"question": question,
"answers": answers,
"ctxs": ctxs
}
yield q_id, example_dict
|