Datasets:
File size: 8,001 Bytes
ce4a725 0036d65 ce4a725 0036d65 ce4a725 0036d65 ce4a725 b4f4ace ce4a725 0036d65 ce4a725 5ab001a ce4a725 0036d65 ce4a725 0036d65 ce4a725 0036d65 ce4a725 0036d65 ce4a725 0036d65 ce4a725 0036d65 ce4a725 5ab001a ce4a725 0036d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import json
from typing import Dict, List, Optional, Union
import datasets as ds
import pandas as pd
_CITATION = """
@InProceedings{Kurihara_nlp2020,
author = "鈴木正敏 and 鈴木潤 and 松田耕史 and ⻄田京介 and 井之上直也",
title = "JAQKET: クイズを題材にした日本語 QA データセットの構築",
booktitle = "言語処理学会第26回年次大会",
year = "2020",
url = "https://www.anlp.jp/proceedings/annual_meeting/2020/pdf_dir/P2-24.pdf"
note= "in Japanese"
"""
_DESCRIPTION = """\
JAQKET: JApanese Questions on Knowledge of EnTitie
"""
_HOMEPAGE = "https://sites.google.com/view/project-aio/dataset"
_LICENSE = """\
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
"""
_DESCRIPTION_CONFIGS = {
"v1.0": "v1.0",
"v2.0": "v2.0",
}
_URLS = {
"v1.0": {
"train": "https://jaqket.s3.ap-northeast-1.amazonaws.com/data/aio_01/train_questions.json",
"valid": "https://jaqket.s3.ap-northeast-1.amazonaws.com/data/aio_01/dev1_questions.json",
"candidate_entities": "https://jaqket.s3.ap-northeast-1.amazonaws.com/data/aio_01/candidate_entities.json.gz",
},
"v2.0": {
"train": "https://huggingface.co/datasets/kumapo/JAQKET/resolve/main/train_jaqket_59.350.json",
"valid": "https://huggingface.co/datasets/kumapo/JAQKET/resolve/main/dev_jaqket_59.350.json",
},
}
def dataset_info_v1() -> ds.Features:
features = ds.Features(
{
"qid": ds.Value("string"),
"question": ds.Value("string"),
"answer_entity": ds.Value("string"),
"label": ds.Value("int32"),
"answer_candidates": ds.Sequence(
ds.Value("string"),
),
"contexts": ds.Sequence(
ds.Value("string")
)
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
)
def dataset_info_v2() -> ds.Features:
features = ds.Features(
{
"qid": ds.Value("string"),
"question": ds.Value("string"),
"answers": ds.Sequence({
"text": ds.Value("string"),
"answer_start": ds.Value("int32"),
}),
"ctxs": ds.Sequence({
"id": ds.Value("string"),
"title": ds.Value("string"),
"text": ds.Value("string"),
"score": ds.Value("float32"),
"has_answer": ds.Value("bool"),
})
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
)
class JAQKET(ds.GeneratorBasedBuilder):
VERSION = ds.Version("0.2.0")
BUILDER_CONFIGS = [
ds.BuilderConfig(
name="v1.0",
version=VERSION,
description=_DESCRIPTION_CONFIGS["v1.0"],
),
ds.BuilderConfig(
name="v2.0",
version=VERSION,
description=_DESCRIPTION_CONFIGS["v2.0"],
),
]
def _info(self) -> ds.DatasetInfo:
if self.config.name == "v1.0":
return dataset_info_v1()
elif self.config.name == "v2.0":
return dataset_info_v2()
else:
raise ValueError(f"Invalid config name: {self.config.name}")
def _split_generators(self, dl_manager: ds.DownloadManager):
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
if self.config.name == "v1.0":
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={"file_path": file_paths["train"], "entities_file_path": file_paths["candidate_entities"]},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION,
gen_kwargs={"file_path": file_paths["valid"], "entities_file_path": file_paths["candidate_entities"]},
),
]
elif self.config.name == "v2.0":
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={"file_path": file_paths["train"]},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION,
gen_kwargs={"file_path": file_paths["valid"]},
),
]
else:
raise ValueError(f"Invalid config name: {self.config.name}")
def _generate_examples_v1(
self,
file_path: Optional[str] = None,
entities_file_path: Optional[str] = None,
num_candidates: Optional[int] = None,
):
if file_path is None or entities_file_path is None:
raise ValueError(f"Invalid argument for {self.config.name}")
entities = dict()
with open(entities_file_path, "r", encoding="utf-8") as fin:
lines = fin.readlines()
for line in lines:
entity = json.loads(line.strip())
entities[entity["title"]] = entity["text"]
with open(file_path, "r", encoding="utf-8") as fin:
lines = fin.readlines()
for line in lines:
data_raw = json.loads(line.strip("\n"))
q_id = data_raw["qid"]
question = data_raw["question"].replace("_", "")
answer_entity = data_raw["answer_entity"]
answer_candidates = data_raw["answer_candidates"][:num_candidates]
if answer_entity not in answer_candidates:
continue
if len(answer_candidates) != num_candidates:
continue
contexts = [entities[answer_candidates[i]] for i in range(num_candidates)]
label = str(answer_candidates.index(answer_entity))
example_dict = {
"qid": q_id,
"question": question,
"answer_entity": answer_entity,
"label": label,
"answer_candidates": answer_candidates,
"contexts": contexts,
}
yield q_id, example_dict
def _generate_examples_v2(
self,
file_path: Optional[str] = None
):
if file_path is None:
raise ValueError(f"Invalid argument for {self.config.name}")
with open(file_path, "r") as rf:
json_data = json.load(rf)
for json_dict in json_data:
q_id = json_dict["qid"]
question = json_dict["question"]
answers = [
{"text": answer, "answer_start": -1 } # -1: dummy
for answer in json_dict["answers"]
]
ctxs = [
{
"id": ctx["id"],
"title": ctx["title"],
"text": ctx["text"],
"score": float(ctx["score"]),
"has_answer": ctx["has_answer"]
}
for ctx in json_dict["ctxs"]
]
example_dict = {
"qid": q_id,
"question": question,
"answers": answers,
"ctxs": ctxs
}
yield q_id, example_dict
def _generate_examples(
self,
file_path: Optional[str] = None,
entities_file_path: Optional[str] = None,
num_candidates: int = 5,
):
if self.config.name == "v1.0":
yield from self._generate_examples_v1(file_path, entities_file_path, num_candidates)
elif self.config.name == "v2.0":
yield from self._generate_examples_v2(file_path)
else:
raise ValueError(f"Invalid config name: {self.config.name}")
|