Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Arabic
Size:
1K - 10K
License:
File size: 4,656 Bytes
8b735a8 2b93314 8b735a8 2b93314 8b735a8 a06b9c5 8b735a8 3488023 8b735a8 7c07b43 3aa5f0b 759068a 3aa5f0b 8b735a8 7c07b43 8b735a8 7c07b43 8b735a8 7c07b43 8b735a8 7c07b43 8b735a8 c47d0af 8b735a8 c47d0af 8b735a8 7c07b43 8b735a8 7c07b43 8b735a8 7c07b43 8b735a8 7c07b43 6e53ec0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
annotations_creators:
- found
language_creators:
- found
language:
- ar
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: Arabic Jordanian General Tweets
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': Negative
'1': Positive
config_name: plain_text
splits:
- name: train
num_bytes: 175424
num_examples: 1800
download_size: 107395
dataset_size: 175424
---
# Dataset Card for Arabic Jordanian General Tweets
## Table of Contents
- [Dataset Card for Arabic Jordanian General Tweets](#dataset-card-for-arabic-jordanian-general-tweets)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [|split|num examples|](#splitnum-examples)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [Arabic Jordanian General Tweets](https://github.com/komari6/Arabic-twitter-corpus-AJGT)
- **Paper:** [Arabic Tweets Sentimental Analysis Using Machine Learning](https://link.springer.com/chapter/10.1007/978-3-319-60042-0_66)
- **Point of Contact:** [Khaled Alomari](khaled.alomari@adu.ac.ae)
### Dataset Summary
Arabic Jordanian General Tweets (AJGT) Corpus consisted of 1,800 tweets annotated as positive and negative. Modern Standard Arabic (MSA) or Jordanian dialect.
### Supported Tasks and Leaderboards
The dataset was published on this [paper](https://link.springer.com/chapter/10.1007/978-3-319-60042-0_66).
### Languages
The dataset is based on Arabic.
## Dataset Structure
### Data Instances
A binary datset with with negative and positive sentiments.
### Data Fields
- `text` (str): Tweet text.
- `label` (int): Sentiment.
### Data Splits
The dataset is not split.
| | train |
|----------|------:|
| no split | 1,800 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
Contains 1,800 tweets collected from twitter.
#### Who are the source language producers?
From tweeter.
### Annotations
The dataset does not contain any additional annotations.
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@inproceedings{alomari2017arabic,
title={Arabic tweets sentimental analysis using machine learning},
author={Alomari, Khaled Mohammad and ElSherif, Hatem M and Shaalan, Khaled},
booktitle={International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems},
pages={602--610},
year={2017},
organization={Springer}
}
```
### Contributions
Thanks to [@zaidalyafeai](https://github.com/zaidalyafeai), [@lhoestq](https://github.com/lhoestq) for adding this dataset. |