File size: 19,534 Bytes
9219ec0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# Uncompiled variant of airbench94_compiled.py
# 3.83s runtime on an A100; 0.36 PFLOPs.
# Evidence: 94.01 average accuracy in n=1000 runs.
#
# We recorded the runtime of 3.83 seconds on an NVIDIA A100-SXM4-80GB with the following nvidia-smi:
# NVIDIA-SMI 515.105.01 Driver Version: 515.105.01 CUDA Version: 11.7
# torch.__version__ == '2.1.2+cu118'
#############################################
# Setup/Hyperparameters #
#############################################
import os
import sys
import uuid
from math import ceil
import torch
from torch import nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as T
torch.backends.cudnn.benchmark = True
# We express the main training hyperparameters (batch size, learning rate, momentum, and weight decay)
# in decoupled form, so that each one can be tuned independently. This accomplishes the following:
# * Assuming time-constant gradients, the average step size is decoupled from everything but the lr.
# * The size of the weight decay update is decoupled from everything but the wd.
# In constrast, normally when we increase the (Nesterov) momentum, this also scales up the step size
# proportionally to 1 + 1 / (1 - momentum), meaning we cannot change momentum without having to re-tune
# the learning rate. Similarly, normally when we increase the learning rate this also increases the size
# of the weight decay, requiring a proportional decrease in the wd to maintain the same decay strength.
#
# The practical impact is that hyperparameter tuning is faster, since this parametrization allows each
# one to be tuned independently. See https://myrtle.ai/learn/how-to-train-your-resnet-5-hyperparameters/.
hyp = {
'opt': {
'train_epochs': 9.9,
'batch_size': 1024,
'lr': 11.5, # learning rate per 1024 examples
'momentum': 0.85,
'weight_decay': 0.0153, # weight decay per 1024 examples (decoupled from learning rate)
'bias_scaler': 64.0, # scales up learning rate (but not weight decay) for BatchNorm biases
'label_smoothing': 0.2,
'whiten_bias_epochs': 3, # how many epochs to train the whitening layer bias before freezing
},
'aug': {
'flip': True,
'translate': 2,
},
'net': {
'widths': {
'block1': 64,
'block2': 256,
'block3': 256,
},
'batchnorm_momentum': 0.6,
'scaling_factor': 1/9,
'tta_level': 2, # the level of test-time augmentation: 0=none, 1=mirror, 2=mirror+translate
},
}
#############################################
# DataLoader #
#############################################
CIFAR_MEAN = torch.tensor((0.4914, 0.4822, 0.4465))
CIFAR_STD = torch.tensor((0.2470, 0.2435, 0.2616))
def batch_flip_lr(inputs):
flip_mask = (torch.rand(len(inputs), device=inputs.device) < 0.5).view(-1, 1, 1, 1)
return torch.where(flip_mask, inputs.flip(-1), inputs)
def batch_crop(images, crop_size):
r = (images.size(-1) - crop_size)//2
shifts = torch.randint(-r, r+1, size=(len(images), 2), device=images.device)
images_out = torch.empty((len(images), 3, crop_size, crop_size), device=images.device, dtype=images.dtype)
# The two cropping methods in this if-else produce equivalent results, but the second is faster for r > 2.
if r <= 2:
for sy in range(-r, r+1):
for sx in range(-r, r+1):
mask = (shifts[:, 0] == sy) & (shifts[:, 1] == sx)
images_out[mask] = images[mask, :, r+sy:r+sy+crop_size, r+sx:r+sx+crop_size]
else:
images_tmp = torch.empty((len(images), 3, crop_size, crop_size+2*r), device=images.device, dtype=images.dtype)
for s in range(-r, r+1):
mask = (shifts[:, 0] == s)
images_tmp[mask] = images[mask, :, r+s:r+s+crop_size, :]
for s in range(-r, r+1):
mask = (shifts[:, 1] == s)
images_out[mask] = images_tmp[mask, :, :, r+s:r+s+crop_size]
return images_out
class CifarLoader:
def __init__(self, path, train=True, batch_size=500, aug=None, drop_last=None, shuffle=None, gpu=0):
data_path = os.path.join(path, 'train.pt' if train else 'test.pt')
if not os.path.exists(data_path):
dset = torchvision.datasets.CIFAR10(path, download=True, train=train)
images = torch.tensor(dset.data)
labels = torch.tensor(dset.targets)
torch.save({'images': images, 'labels': labels, 'classes': dset.classes}, data_path)
data = torch.load(data_path, map_location=torch.device(gpu))
self.images, self.labels, self.classes = data['images'], data['labels'], data['classes']
# It's faster to load+process uint8 data than to load preprocessed fp16 data
self.images = (self.images.half() / 255).permute(0, 3, 1, 2).to(memory_format=torch.channels_last)
self.normalize = T.Normalize(CIFAR_MEAN, CIFAR_STD)
self.proc_images = {} # Saved results of image processing to be done on the first epoch
self.epoch = 0
self.aug = aug or {}
for k in self.aug.keys():
assert k in ['flip', 'translate'], 'Unrecognized key: %s' % k
self.batch_size = batch_size
self.drop_last = train if drop_last is None else drop_last
self.shuffle = train if shuffle is None else shuffle
def __len__(self):
return len(self.images)//self.batch_size if self.drop_last else ceil(len(self.images)/self.batch_size)
def __iter__(self):
if self.epoch == 0:
images = self.proc_images['norm'] = self.normalize(self.images)
# Pre-flip images in order to do every-other epoch flipping scheme
if self.aug.get('flip', False):
images = self.proc_images['flip'] = batch_flip_lr(images)
# Pre-pad images to save time when doing random translation
pad = self.aug.get('translate', 0)
if pad > 0:
self.proc_images['pad'] = F.pad(images, (pad,)*4, 'reflect')
if self.aug.get('translate', 0) > 0:
images = batch_crop(self.proc_images['pad'], self.images.shape[-2])
elif self.aug.get('flip', False):
images = self.proc_images['flip']
else:
images = self.proc_images['norm']
# Flip all images together every other epoch. This increases diversity relative to random flipping
if self.aug.get('flip', False):
if self.epoch % 2 == 1:
images = images.flip(-1)
self.epoch += 1
indices = (torch.randperm if self.shuffle else torch.arange)(len(images), device=images.device)
for i in range(len(self)):
idxs = indices[i*self.batch_size:(i+1)*self.batch_size]
yield (images[idxs], self.labels[idxs])
#############################################
# Network Components #
#############################################
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class Mul(nn.Module):
def __init__(self, scale):
super().__init__()
self.scale = scale
def forward(self, x):
return x * self.scale
class BatchNorm(nn.BatchNorm2d):
def __init__(self, num_features, momentum, eps=1e-12,
weight=False, bias=True):
super().__init__(num_features, eps=eps, momentum=1-momentum)
self.weight.requires_grad = weight
self.bias.requires_grad = bias
# Note that PyTorch already initializes the weights to one and bias to zero
class Conv(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size=3, padding='same', bias=False):
super().__init__(in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
def reset_parameters(self):
super().reset_parameters()
if self.bias is not None:
self.bias.data.zero_()
w = self.weight.data
torch.nn.init.dirac_(w[:w.size(1)])
class ConvGroup(nn.Module):
def __init__(self, channels_in, channels_out, batchnorm_momentum):
super().__init__()
self.conv1 = Conv(channels_in, channels_out)
self.pool = nn.MaxPool2d(2)
self.norm1 = BatchNorm(channels_out, batchnorm_momentum)
self.conv2 = Conv(channels_out, channels_out)
self.norm2 = BatchNorm(channels_out, batchnorm_momentum)
self.activ = nn.GELU()
def forward(self, x):
x = self.conv1(x)
x = self.pool(x)
x = self.norm1(x)
x = self.activ(x)
x = self.conv2(x)
x = self.norm2(x)
x = self.activ(x)
return x
#############################################
# Network Definition #
#############################################
def make_net():
widths = hyp['net']['widths']
batchnorm_momentum = hyp['net']['batchnorm_momentum']
whiten_kernel_size = 2
whiten_width = 2 * 3 * whiten_kernel_size**2
net = nn.Sequential(
Conv(3, whiten_width, whiten_kernel_size, padding=0, bias=True),
nn.GELU(),
ConvGroup(whiten_width, widths['block1'], batchnorm_momentum),
ConvGroup(widths['block1'], widths['block2'], batchnorm_momentum),
ConvGroup(widths['block2'], widths['block3'], batchnorm_momentum),
nn.MaxPool2d(3),
Flatten(),
nn.Linear(widths['block3'], 10, bias=False),
Mul(hyp['net']['scaling_factor']),
)
net[0].weight.requires_grad = False
net = net.half().cuda()
net = net.to(memory_format=torch.channels_last)
for mod in net.modules():
if isinstance(mod, BatchNorm):
mod.float()
return net
#############################################
# Whitening Conv Initialization #
#############################################
def get_patches(x, patch_shape):
c, (h, w) = x.shape[1], patch_shape
return x.unfold(2,h,1).unfold(3,w,1).transpose(1,3).reshape(-1,c,h,w).float()
def get_whitening_parameters(patches):
n,c,h,w = patches.shape
patches_flat = patches.view(n, -1)
est_patch_covariance = (patches_flat.T @ patches_flat) / n
eigenvalues, eigenvectors = torch.linalg.eigh(est_patch_covariance, UPLO='U')
return eigenvalues.flip(0).view(-1, 1, 1, 1), eigenvectors.T.reshape(c*h*w,c,h,w).flip(0)
def init_whitening_conv(layer, train_set, eps=5e-4):
patches = get_patches(train_set, patch_shape=layer.weight.data.shape[2:])
eigenvalues, eigenvectors = get_whitening_parameters(patches)
eigenvectors_scaled = eigenvectors / torch.sqrt(eigenvalues + eps)
layer.weight.data[:] = torch.cat((eigenvectors_scaled, -eigenvectors_scaled))
############################################
# Lookahead #
############################################
class LookaheadState:
def __init__(self, net):
self.net_ema = {k: v.clone() for k, v in net.state_dict().items()}
def update(self, net, decay):
for ema_param, net_param in zip(self.net_ema.values(), net.state_dict().values()):
if net_param.dtype in (torch.half, torch.float):
ema_param.lerp_(net_param, 1-decay)
net_param.copy_(ema_param)
############################################
# Logging #
############################################
def print_columns(columns_list, is_head=False, is_final_entry=False):
print_string = ''
for col in columns_list:
print_string += '| %s ' % col
print_string += '|'
if is_head:
print('-'*len(print_string))
print(print_string)
if is_head or is_final_entry:
print('-'*len(print_string))
logging_columns_list = ['run ', 'epoch', 'train_loss', 'train_acc', 'val_acc', 'tta_val_acc', 'total_time_seconds']
def print_training_details(variables, is_final_entry):
formatted = []
for col in logging_columns_list:
var = variables.get(col.strip(), None)
if type(var) in (int, str):
res = str(var)
elif type(var) is float:
res = '{:0.4f}'.format(var)
else:
assert var is None
res = ''
formatted.append(res.rjust(len(col)))
print_columns(formatted, is_final_entry=is_final_entry)
############################################
# Evaluation #
############################################
def infer(model, loader, tta_level=0):
# Test-time augmentation strategy (for tta_level=2):
# 1. Flip/mirror the image left-to-right (50% of the time).
# 2. Translate the image by one pixel either up-and-left or down-and-right (50% of the time,
# i.e. both happen 25% of the time).
#
# This creates 6 views per image (left/right times the two translations and no-translation),
# which we evaluate and then weight according to the given probabilities.
def infer_basic(inputs, net):
return net(inputs).clone()
def infer_mirror(inputs, net):
return 0.5 * net(inputs) + 0.5 * net(inputs.flip(-1))
def infer_mirror_translate(inputs, net):
logits = infer_mirror(inputs, net)
pad = 1
padded_inputs = F.pad(inputs, (pad,)*4, 'reflect')
inputs_translate_list = [
padded_inputs[:, :, 0:32, 0:32],
padded_inputs[:, :, 2:34, 2:34],
]
logits_translate_list = [infer_mirror(inputs_translate, net)
for inputs_translate in inputs_translate_list]
logits_translate = torch.stack(logits_translate_list).mean(0)
return 0.5 * logits + 0.5 * logits_translate
model.eval()
test_images = loader.normalize(loader.images)
infer_fn = [infer_basic, infer_mirror, infer_mirror_translate][tta_level]
with torch.no_grad():
return torch.cat([infer_fn(inputs, model) for inputs in test_images.split(2000)])
def evaluate(model, loader, tta_level=0):
logits = infer(model, loader, tta_level)
return (logits.argmax(1) == loader.labels).float().mean().item()
############################################
# Training #
############################################
def main(run):
batch_size = hyp['opt']['batch_size']
epochs = hyp['opt']['train_epochs']
momentum = hyp['opt']['momentum']
# Assuming gradients are constant in time, for Nesterov momentum, the below ratio is how much
# larger the default steps will be than the underlying per-example gradients. We divide the
# learning rate by this ratio in order to ensure steps are the same scale as gradients, regardless
# of the choice of momentum.
kilostep_scale = 1024 * (1 + 1 / (1 - momentum))
lr = hyp['opt']['lr'] / kilostep_scale # un-decoupled learning rate for PyTorch SGD
wd = hyp['opt']['weight_decay'] * batch_size / kilostep_scale
lr_biases = lr * hyp['opt']['bias_scaler']
loss_fn = nn.CrossEntropyLoss(label_smoothing=hyp['opt']['label_smoothing'], reduction='none')
test_loader = CifarLoader('cifar10', train=False, batch_size=2000)
train_loader = CifarLoader('cifar10', train=True, batch_size=batch_size, aug=hyp['aug'])
if run == 'warmup':
# The only purpose of the first run is to warmup, so we can use dummy data
train_loader.labels = torch.randint(0, 10, size=(len(train_loader.labels),), device=train_loader.labels.device)
total_train_steps = ceil(len(train_loader) * epochs)
model = make_net()
current_steps = 0
norm_biases = [p for k, p in model.named_parameters() if 'norm' in k and p.requires_grad]
other_params = [p for k, p in model.named_parameters() if 'norm' not in k and p.requires_grad]
param_configs = [dict(params=norm_biases, lr=lr_biases, weight_decay=wd/lr_biases),
dict(params=other_params, lr=lr, weight_decay=wd/lr)]
optimizer = torch.optim.SGD(param_configs, momentum=momentum, nesterov=True)
def get_lr(step):
warmup_steps = int(total_train_steps * 0.23)
warmdown_steps = total_train_steps - warmup_steps
if step < warmup_steps:
frac = step / warmup_steps
return 0.2 * (1 - frac) + 1.0 * frac
else:
frac = (step - warmup_steps) / warmdown_steps
return 1.0 * (1 - frac) + 0.07 * frac
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, get_lr)
alpha_schedule = 0.95**5 * (torch.arange(total_train_steps+1) / total_train_steps)**3
lookahead_state = LookaheadState(model)
# For accurately timing GPU code
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
total_time_seconds = 0.0
# Initialize the whitening layer using training images
starter.record()
train_images = train_loader.normalize(train_loader.images[:5000])
init_whitening_conv(model[0], train_images)
ender.record()
torch.cuda.synchronize()
total_time_seconds += 1e-3 * starter.elapsed_time(ender)
for epoch in range(ceil(epochs)):
model[0].bias.requires_grad = (epoch < hyp['opt']['whiten_bias_epochs'])
####################
# Training #
####################
starter.record()
model.train()
for inputs, labels in train_loader:
outputs = model(inputs)
loss = loss_fn(outputs, labels).sum()
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
scheduler.step()
current_steps += 1
if current_steps % 5 == 0:
lookahead_state.update(model, decay=alpha_schedule[current_steps].item())
if current_steps >= total_train_steps:
if lookahead_state is not None:
lookahead_state.update(model, decay=1.0)
break
ender.record()
torch.cuda.synchronize()
total_time_seconds += 1e-3 * starter.elapsed_time(ender)
####################
# Evaluation #
####################
# Save the accuracy and loss from the last training batch of the epoch
train_acc = (outputs.detach().argmax(1) == labels).float().mean().item()
train_loss = loss.item() / batch_size
val_acc = evaluate(model, test_loader, tta_level=0)
print_training_details(locals(), is_final_entry=False)
run = None # Only print the run number once
####################
# TTA Evaluation #
####################
starter.record()
tta_val_acc = evaluate(model, test_loader, tta_level=hyp['net']['tta_level'])
ender.record()
torch.cuda.synchronize()
total_time_seconds += 1e-3 * starter.elapsed_time(ender)
epoch = 'eval'
print_training_details(locals(), is_final_entry=True)
return tta_val_acc
if __name__ == "__main__":
with open(sys.argv[0]) as f:
code = f.read()
print_columns(logging_columns_list, is_head=True)
#main('warmup')
accs = torch.tensor([main(run) for run in range(25)])
print('Mean: %.4f Std: %.4f' % (accs.mean(), accs.std()))
log = {'code': code, 'accs': accs}
log_dir = os.path.join('logs', str(uuid.uuid4()))
os.makedirs(log_dir, exist_ok=True)
log_path = os.path.join(log_dir, 'log.pt')
print(os.path.abspath(log_path))
torch.save(log, os.path.join(log_dir, 'log.pt'))
|