File size: 22,901 Bytes
01c7a56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import argparse
import datetime
import importlib
import json
import os
import sys
import traceback
import warnings
from functools import partial
import numpy as np
import yaml
warnings.simplefilter("ignore", category=DeprecationWarning)
import hashlib
from pathlib import Path
from typing import Union
from accelerate import Accelerator
from accelerate.utils import InitProcessGroupKwargs
from loguru import logger as eval_logger
from lmms_eval import evaluator, utils
from lmms_eval.models import get_model
from lmms_eval.evaluator import request_caching_arg_to_dict
from lmms_eval.loggers import EvaluationTracker, WandbLogger
from lmms_eval.tasks import TaskManager
from lmms_eval.utils import (
make_table,
simple_parse_args_string,
)
from qmllm.quantization.quant_wrapper import qwrapper
from qmllm.models import get_process_model
from qmllm.calibration.pileval import get_calib_dataset
from qmllm.calibration.coco_vl import get_multimodal_calib_dataset
def _int_or_none_list_arg_type(min_len: int, max_len: int, defaults: str, value: str, split_char: str = ","):
def parse_value(item):
item = item.strip().lower()
if item == "none":
return None
try:
return int(item)
except ValueError:
raise argparse.ArgumentTypeError(f"{item} is not an integer or None")
items = [parse_value(v) for v in value.split(split_char)]
num_items = len(items)
if num_items == 1:
# Makes downstream handling the same for single and multiple values
items = items * max_len
elif num_items < min_len or num_items > max_len:
raise argparse.ArgumentTypeError(f"Argument requires {max_len} integers or None, separated by '{split_char}'")
elif num_items != max_len:
print(f"Argument requires {max_len} integers or None, separated by '{split_char}'. " "Missing values will be filled with defaults.")
default_items = [parse_value(v) for v in defaults.split(split_char)]
items.extend(default_items[num_items:]) # extend items list with missing defaults
return items
def check_argument_types(parser: argparse.ArgumentParser):
"""
Check to make sure all CLI args are typed, raises error if not
"""
for action in parser._actions:
if action.dest != "help" and not action.const:
if action.type is None:
raise ValueError(f"Argument '{action.dest}' doesn't have a type specified.")
else:
continue
def _handle_non_serializable(o):
if isinstance(o, np.int64) or isinstance(o, np.int32):
return int(o)
elif isinstance(o, set):
return list(o)
else:
return str(o)
def parse_eval_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--config", default="", help="Path to a yaml file specifying all eval arguments, will ignore cli arguments if specified")
parser.add_argument("--model", default="hf", help="Name of model e.g. `hf`")
parser.add_argument(
"--tasks",
default=None,
help="To get full list of tasks, use the command lmms-eval --tasks list",
)
parser.add_argument(
"--model_args",
default="",
help="String arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
)
parser.add_argument(
"--num_fewshot",
type=int,
default=None,
help="Number of examples in few-shot context",
)
parser.add_argument(
"--batch_size",
"-b",
type=str,
default=1,
metavar="auto|auto:N|N",
help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=None,
metavar="N",
help="Maximal batch size to try with --batch_size auto.",
)
parser.add_argument(
"--device",
type=str,
default=None,
help="Device to use (e.g. cuda, cuda:0, cpu)",
)
parser.add_argument(
"--output_path",
default=None,
type=str,
metavar="= [dir/file.jsonl] [DIR]",
help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
)
parser.add_argument(
"--limit",
type=float,
default=None,
help="Limit the number of examples per task. " "If <1, limit is a percentage of the total number of examples.",
)
parser.add_argument(
"--use_cache",
"-c",
type=str,
default=None,
metavar="DIR",
help="A path to a sqlite db file for caching model responses. `None` if not caching.",
)
parser.add_argument(
"--cache_requests",
type=str,
default=None,
choices=["true", "refresh", "delete"],
help="Speed up evaluation by caching the building of dataset requests. `None` if not caching.",
)
parser.add_argument(
"--check_integrity",
action="store_true",
help="Whether to run the relevant part of the test suite for the tasks",
)
parser.add_argument(
"--write_out",
"-w",
action="store_true",
default=False,
help="Prints the prompt for the first few documents.",
)
parser.add_argument(
"--log_samples",
action="store_true",
default=False,
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis",
)
parser.add_argument(
"--wandb_log_samples",
action="store_true",
default=False,
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis to Weights and Biases",
)
parser.add_argument(
"--log_samples_suffix",
type=str,
default="model_outputs",
help="Specify a suffix for the log_samples file name.",
)
parser.add_argument(
"--system_instruction",
type=str,
default=None,
help="System instruction to be used in the prompt",
)
parser.add_argument(
"--apply_chat_template",
action="store_true",
default=False,
help="If True, applies the chat template to the prompt",
)
parser.add_argument(
"--fewshot_as_multiturn",
action="store_true",
default=False,
help="If True, uses the fewshot as a multi-turn conversation",
)
parser.add_argument(
"--show_config",
action="store_true",
default=False,
help="If True, shows the the full config of all tasks at the end of the evaluation.",
)
parser.add_argument(
"--include_path",
type=str,
default=None,
help="Additional path to include if there are external tasks to include.",
)
parser.add_argument(
"--gen_kwargs",
default="",
help=("String arguments for model generation on greedy_until tasks," " e.g. `temperature=0,top_k=0,top_p=0`"),
)
parser.add_argument(
"--verbosity",
type=str,
default="INFO",
help="Log error when tasks are not registered.",
)
parser.add_argument(
"--wandb_args",
default="",
help="Comma separated string arguments passed to wandb.init, e.g. `project=lmms-eval,job_type=eval",
)
parser.add_argument(
"--timezone",
default="Asia/Singapore",
help="Timezone for datetime string, e.g. Asia/Singapore, America/New_York, America/Los_Angeles. You can check the full list via `import pytz; print(pytz.common_timezones)`",
)
parser.add_argument(
"--hf_hub_log_args",
type=str,
default="",
help="Comma separated string arguments passed to Hugging Face Hub's log function, e.g. `hub_results_org=EleutherAI,hub_repo_name=lm-eval-results`",
)
parser.add_argument(
"--predict_only",
"-x",
action="store_true",
default=False,
help="Use with --log_samples. Only model outputs will be saved and metrics will not be evaluated.",
)
default_seed_string = "0,1234,1234,1234"
parser.add_argument(
"--seed",
type=partial(_int_or_none_list_arg_type, 3, 4, default_seed_string),
default=default_seed_string, # for backward compatibility
help=(
"Set seed for python's random, numpy, torch, and fewshot sampling.\n"
"Accepts a comma-separated list of 4 values for python's random, numpy, torch, and fewshot sampling seeds, "
"respectively, or a single integer to set the same seed for all four.\n"
f"The values are either an integer or 'None' to not set the seed. Default is `{default_seed_string}` "
"(for backward compatibility).\n"
"E.g. `--seed 0,None,8,52` sets `random.seed(0)`, `torch.manual_seed(8)`, and fewshot sampling seed to 52. "
"Here numpy's seed is not set since the second value is `None`.\n"
"E.g, `--seed 42` sets all four seeds to 42."
),
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="Sets trust_remote_code to True to execute code to create HF Datasets from the Hub",
)
# calibration parameters
parser.add_argument("--calib_data", default="pileval", choices=["pileval", "coco", None])
parser.add_argument("--data_path", default="", type=str)
parser.add_argument("--image_folder", default="", type=str)
parser.add_argument("--n_samples", default=128, type=int)
parser.add_argument("--interleave_format", action="store_true")
# TODO: quantization parameters
parser.add_argument("--method", default="awq", choices=["awq", "smoothquant", "mbq", "rtn", None])
parser.add_argument("--w_bit", default=8, type=int)
parser.add_argument("--a_bit", default=16, type=int)
parser.add_argument("--w_group", default=128, type=int)
parser.add_argument("--alpha", default=0.5, type=int)
parser.add_argument("--reweight", action="store_true")
parser.add_argument("--distort", action="store_true")
parser.add_argument("--loss_mode", default="mae", choices=["mae", "mse"])
parser.add_argument("--scale_path", default=None, type=str)
parser.add_argument("--run_process", action="store_true")
parser.add_argument("--pseudo_quant", action="store_true")
args = parser.parse_args()
return args
def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None:
if not args:
args = parse_eval_args()
# Check if no arguments were passed after parsing
if len(sys.argv) == 1:
print("βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
print("β Please provide arguments to evaluate the model. e.g. β")
print("β `lmms-eval --model llava --model_path liuhaotian/llava-v1.6-7b --tasks okvqa` β")
print("β Use `lmms-eval --help` for more information. β")
print("βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
sys.exit(1)
if args.wandb_args:
if "name" not in args.wandb_args:
name = f"{args.model}_{args.model_args}_{utils.get_datetime_str(timezone=args.timezone)}"
name = utils.sanitize_long_string(name)
args.wandb_args += f",name={name}"
wandb_logger = WandbLogger(**simple_parse_args_string(args.wandb_args))
# reset logger
eval_logger.remove()
eval_logger.add(sys.stdout, colorize=True, level=args.verbosity)
eval_logger.info(f"Verbosity set to {args.verbosity}")
os.environ["VERBOSITY"] = args.verbosity
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args_list = []
results_list = []
if args.config:
if not os.path.exists(args.config):
raise ValueError(f"Config file does not exist: {args.config}")
with open(args.config, "r") as file:
config_args = yaml.safe_load(file)
config_args = [config_args] if type(config_args) != list else config_args
# multiple configs, create args list first
for config in config_args:
args_copy = argparse.Namespace(**vars(args))
for key, value in config.items():
setattr(args_copy, key, value)
args_list.append(args_copy)
else:
args_list.append(args)
# initialize Accelerator
kwargs_handler = InitProcessGroupKwargs(timeout=datetime.timedelta(seconds=60000))
accelerator = Accelerator(kwargs_handlers=[kwargs_handler])
if accelerator.is_main_process:
is_main_process = True
else:
is_main_process = False
for args in args_list:
try:
# if is_main_process and args.wandb_args: # thoughtfully we should only init wandb once, instead of multiple ranks to avoid network traffics and unwanted behaviors.
# wandb_logger = WandbLogger()
results, samples = cli_evaluate_single(args)
results_list.append(results)
accelerator.wait_for_everyone()
if is_main_process and args.wandb_args:
try:
wandb_logger.post_init(results)
wandb_logger.log_eval_result()
if args.wandb_log_samples and samples is not None:
wandb_logger.log_eval_samples(samples)
except Exception as e:
eval_logger.info(f"Logging to Weights and Biases failed due to {e}")
# wandb_logger.finish()
except Exception as e:
if args.verbosity == "DEBUG":
raise e
else:
traceback.print_exc()
eval_logger.error(f"Error during evaluation: {e}. Please set `--verbosity=DEBUG` to get more information.")
results_list.append(None)
for args, results in zip(args_list, results_list):
# cli_evaluate will return none if the process is not the main process (rank 0)
if results is not None:
print(f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, " f"batch_size: {args.batch_size}")
print(make_table(results))
if "groups" in results:
print(make_table(results, "groups"))
if args.wandb_args:
wandb_logger.run.finish()
def cli_evaluate_single(args: Union[argparse.Namespace, None] = None) -> None:
selected_task_list = args.tasks.split(",") if args.tasks else None
if args.include_path is not None:
eval_logger.info(f"Including path: {args.include_path}")
task_manager = TaskManager(args.verbosity, include_path=args.include_path, model_name=args.model)
# update the evaluation tracker args with the output path and the HF token
if args.output_path:
args.hf_hub_log_args += f",output_path={args.output_path}"
if os.environ.get("HF_TOKEN", None):
args.hf_hub_log_args += f",token={os.environ.get('HF_TOKEN')}"
evaluation_tracker_args = simple_parse_args_string(args.hf_hub_log_args)
eval_logger.info(f"Evaluation tracker args: {evaluation_tracker_args}")
evaluation_tracker = EvaluationTracker(**evaluation_tracker_args)
if args.predict_only:
args.log_samples = True
if (args.log_samples or args.predict_only) and not args.output_path:
raise ValueError("Specify --output_path if providing --log_samples or --predict_only")
if args.fewshot_as_multiturn and args.apply_chat_template is False:
raise ValueError("If fewshot_as_multiturn is set, apply_chat_template must be set to True.")
if (args.num_fewshot is None or args.num_fewshot == 0) and args.fewshot_as_multiturn:
raise ValueError("If fewshot_as_multiturn is set, num_fewshot must be greater than 0.")
if args.include_path is not None:
eval_logger.info(f"Including path: {args.include_path}")
if "push_samples_to_hub" in evaluation_tracker_args and not args.log_samples:
eval_logger.warning("Pushing samples to the Hub requires --log_samples to be set. Samples will not be pushed to the Hub.")
if args.limit:
eval_logger.warning(" --limit SHOULD ONLY BE USED FOR TESTING." "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
if os.environ.get("LMMS_EVAL_PLUGINS", None):
args.include_path = [args.include_path] if args.include_path else []
for plugin in os.environ["LMMS_EVAL_PLUGINS"].split(","):
package_tasks_location = importlib.util.find_spec(f"{plugin}.tasks").submodule_search_locations[0]
args.include_path.append(package_tasks_location)
if args.tasks is None:
eval_logger.error("Need to specify task to evaluate.")
sys.exit()
elif args.tasks == "list":
eval_logger.info("Available Tasks:\n - {}".format(f"\n - ".join(sorted(task_manager.list_all_tasks()))))
sys.exit()
elif args.tasks == "list_groups":
eval_logger.info(task_manager.list_all_tasks(list_subtasks=False, list_tags=False))
sys.exit()
elif args.tasks == "list_tags":
eval_logger.info(task_manager.list_all_tasks(list_groups=False, list_subtasks=False))
sys.exit()
elif args.tasks == "list_subtasks":
eval_logger.info(task_manager.list_all_tasks(list_groups=False, list_tags=False))
sys.exit()
else:
if os.path.isdir(args.tasks):
import glob
task_names = []
yaml_path = os.path.join(args.tasks, "*.yaml")
for yaml_file in glob.glob(yaml_path):
config = utils.load_yaml_config(yaml_file)
task_names.append(config)
else:
task_list = args.tasks.split(",")
task_names = task_manager.match_tasks(task_list)
for task in [task for task in task_list if task not in task_names]:
if os.path.isfile(task):
config = utils.load_yaml_config(task)
task_names.append(config)
task_missing = [task for task in task_list if task not in task_names and "*" not in task] # we don't want errors if a wildcard ("*") task name was used
if task_missing:
missing = ", ".join(task_missing)
eval_logger.error(
f"Tasks were not found: {missing}\n" f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks",
)
raise ValueError(
f"Tasks not found: {missing}. Try `lm-eval --tasks {{list_groups,list_subtasks,list_tags,list}}` to list out all available names for task groupings; only (sub)tasks; tags; or all of the above, or pass '--verbosity DEBUG' to troubleshoot task registration issues."
)
eval_logger.info(f"Selected Tasks: {task_names}")
request_caching_args = request_caching_arg_to_dict(cache_requests=args.cache_requests)
datetime_str = utils.get_datetime_str(timezone=args.timezone)
# here we load MLLMs outside of the evaluator.
if args.model_args is None:
args.model_args = ""
ModelClass = get_model(args.model)
lm = ModelClass.create_from_arg_string(
args.model_args,
{
"batch_size": args.batch_size,
"device": args.device,
},
)
#
if args.pseudo_quant:
print("Pseudo quant...")
Process_ModelClass = get_process_model(args.model)
process_model = Process_ModelClass(lm._model,
lm._tokenizer,
lm.processor if hasattr(lm, 'processor') else None)
#
prompt_inputs = None
prompt_kwargs = None
#
qwrapper(process_model, prompt_inputs, prompt_kwargs, args)
results = evaluator.simple_evaluate(
model=args.model,
lm=lm,
model_args=args.model_args,
tasks=task_names,
num_fewshot=args.num_fewshot,
batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
device=args.device,
use_cache=args.use_cache,
limit=args.limit,
check_integrity=args.check_integrity,
write_out=args.write_out,
log_samples=args.log_samples,
evaluation_tracker=evaluation_tracker,
system_instruction=args.system_instruction,
apply_chat_template=args.apply_chat_template,
fewshot_as_multiturn=args.fewshot_as_multiturn,
gen_kwargs=args.gen_kwargs,
task_manager=task_manager,
verbosity=args.verbosity,
predict_only=args.predict_only,
random_seed=args.seed[0],
numpy_random_seed=args.seed[1],
torch_random_seed=args.seed[2],
fewshot_random_seed=args.seed[3],
cli_args=args,
datetime_str=datetime_str,
**request_caching_args,
)
if results is not None:
if args.log_samples:
samples = results.pop("samples")
else:
samples = None
dumped = json.dumps(results, indent=4, default=_handle_non_serializable)
if args.show_config:
print(dumped)
batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))
evaluation_tracker.save_results_aggregated(results=results, samples=samples if args.log_samples else None, datetime_str=datetime_str)
if args.log_samples:
for task_name, config in results["configs"].items():
evaluation_tracker.save_results_samples(task_name=task_name, samples=samples[task_name])
if evaluation_tracker.push_results_to_hub or evaluation_tracker.push_samples_to_hub:
evaluation_tracker.recreate_metadata_card()
return results, samples
return None, None
def print_results(args, results):
print(f"{args.model} ({args.model_args}),\ngen_kwargs: ({args.gen_kwargs}),\nlimit: {args.limit},\nnum_fewshot: {args.num_fewshot},\nbatch_size: {args.batch_size}")
print(evaluator.make_table(results))
if "groups" in results:
print(evaluator.make_table(results, "groups"))
if __name__ == "__main__":
cli_evaluate() |