File size: 5,523 Bytes
4bf0340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6caeb24
4bf0340
 
1477e4d
 
 
4bf0340
f988b29
4bf0340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ec2f93
4bf0340
809e537
4bf0340
 
 
 
9b125c7
 
 
 
4bf0340
9b125c7
 
 
 
 
 
4bf0340
 
 
9b125c7
 
 
 
 
 
 
 
 
4bf0340
 
 
 
 
 
 
 
f988b29
 
601ec3c
4bf0340
 
 
 
 
 
 
809e537
 
 
 
 
 
 
9b125c7
21fa556
 
 
 
809e537
86f095a
9b125c7
 
 
 
4bf0340
a334b09
86f095a
2ba5896
354003c
 
 
ee47538
 
 
 
 
354003c
b499279
354003c
 
 
 
 
 
 
 
 
 
 
 
 
 
e69942f
f988b29
 
5a9a0ca
9b125c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PP4AV dataset."""

import os
from glob import glob
from tqdm import tqdm
from pathlib import Path
from typing import List
import re
from collections import defaultdict
import datasets



_HOMEPAGE = "http://shuoyang1213.me/WIDERFACE/"

_LICENSE = "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)"

_CITATION = """\
@inproceedings{yang2016wider,
    Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},
    Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    Title = {WIDER FACE: A Face Detection Benchmark},
    Year = {2016}}
"""

_DESCRIPTION = """\
WIDER FACE dataset is a face detection benchmark dataset, of which images are
selected from the publicly available WIDER dataset. We choose 32,203 images and
label 393,703 faces with a high degree of variability in scale, pose and
occlusion as depicted in the sample images. WIDER FACE dataset is organized
based on 61 event classes. For each event class, we randomly select 40%/10%/50%
data as training, validation and testing sets. We adopt the same evaluation
metric employed in the PASCAL VOC dataset. Similar to MALF and Caltech datasets,
we do not release bounding box ground truth for the test images. Users are
required to submit final prediction files, which we shall proceed to evaluate.
"""


_REPO = "https://huggingface.co/datasets/khaclinh/testdata/resolve/main/data"
_URLS = {
    "test": f"{_REPO}/fisheye.zip",
    "annot": f"{_REPO}/annotations.zip",
}

IMG_EXT = ['png', 'jpeg', 'jpg']
_SUBREDDITS = ["zurich"]

class TestDataConfig(datasets.BuilderConfig):
    """BuilderConfig for TestData."""

    def __init__(self, name, **kwargs):
        """BuilderConfig for TestData.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(TestDataConfig, self).__init__(version=datasets.Version("1.0.0", ""), name=name, **kwargs)

class TestData(datasets.GeneratorBasedBuilder):
    """WIDER FACE dataset."""
    
    BUILDER_CONFIGS = [
        TestDataConfig("fisheye"),
    ]
    
    BUILDER_CONFIGS += [TestDataConfig(subreddit) for subreddit in _SUBREDDITS]
    
    DEFAULT_CONFIG_NAME = "fisheye"
    
    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "faces": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=4)),
                    "plates": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=4)), 
                    
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )
        
    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "name": self.config.name,
                    "data_dir": data_dir["test"],
                    "annot_dir": data_dir["annot"],
                },
            ),
        ]

    def _generate_examples(self, name, data_dir, annot_dir):
        
        image_dir = os.path.join(data_dir, name)
        annotation_dir = os.path.join(annot_dir, name)
        files = []
        
        idx = 0
        for i_file in glob(os.path.join(image_dir, "*.png")):
            plates = []
            faces = []
            
            img_relative_file = os.path.relpath(i_file, image_dir)
            gt_relative_path = img_relative_file.replace(".png", ".txt")
            
            gt_path = os.path.join(annotation_dir, gt_relative_path)
            
            annotation = defaultdict(list)
            with open(gt_path, "r", encoding="utf-8") as f:
                line = f.readline().strip()
                while line:
                    assert re.match(r"^\d( [\d\.]+){4,5}$", line), "Incorrect line: %s" % line
                    cls, cx, cy, w, h = line.split()[:5]
                    cls, cx, cy, w, h = int(cls), float(cx), float(cy), float(w), float(h)
                    x1, y1, x2, y2 = cx - w / 2, cy - h / 2, cx + w / 2, cy + h / 2
                    annotation[cls].append([x1, y1, x2, y2])
                    line = f.readline().strip()

            for cls, bboxes in annotation.items():
                for x1, y1, x2, y2 in bboxes:
                    if cls == 0:
                        faces.append([x1, y1, x2, y2])
                    else:
                        plates.append([x1, y1, x2, y2])
            
            yield idx, {"image": i_file, "faces": faces, "plates": plates}
            
            idx += 1