hitab / README.md
kasnerz's picture
Upload README.md with huggingface_hub
11ea69e
|
raw
history blame
2.79 kB
---
annotations_creators:
- expert-generated
- crowdsourced
language:
- en
language_creators:
- found
- crowdsourced
- expert-generated
license:
- c-uda
multilinguality:
- monolingual
paperswithcode_id: totto
pretty_name: HiTab
size_categories:
- 10K<n<100K
source_datasets:
- original
- extended|totto
tags: []
task_categories:
- table-to-text
- question-answering
task_ids: []
dataset_info:
features:
- name: id
dtype: string
- name: table_id
dtype: string
- name: table_source
dtype: string
- name: sentence_id
dtype: string
- name: sub_sentence_id
dtype: string
- name: sub_sentence
dtype: string
- name: question
dtype: string
- name: answer
dtype: large_string
- name: aggregation
dtype: large_string
- name: linked_cells
dtype: large_string
- name: answer_formulas
dtype: large_string
- name: reference_cells_map
dtype: large_string
- name: table_content
dtype: large_string
splits:
- name: train
num_bytes: 36419103
num_examples: 7417
- name: validation
num_bytes: 8312699
num_examples: 1671
- name: test
num_bytes: 7710891
num_examples: 1584
download_size: 6462957
dataset_size: 52442693
---
# Dataset Card for HiTab
## Dataset Description
- **Homepage:** https://www.microsoft.com/en-us/research/publication/hitab-a-hierarchical-table-dataset-for-question-answering-and-natural-language-generation/
- **Repository:** https://github.com/microsoft/HiTab/blob/main/LICENSE
- **Paper:** https://aclanthology.org/2022.acl-long.78/
### Dataset Summary
HiTab is a dataset for question answering and data-to-text over hierarchical tables . It contains 10,672 samples and 3,597 tables from statistical reports (StatCan, NSF) and Wikipedia (ToTTo). 98.1% of the tables in HiTab are with hierarchies.
### Supported Tasks and Leaderboards
Table-to-Text Generation, Question Answering
### Languages
English
### Data Instances
3,597 tables, 10,686 sentences
### Data Splits
train, test, validation
## Dataset Creation
During the dataset annotation process, annotators first manually collect tables and descriptive sentences highly-related to tables on statistical websites written by professional analysts. Then these descriptions are revised to questions to preserve the original meanings and analyses.
### Licensing Information
This dataset follows the Computational Use of Data Agreement v1.0.
### Citation Information
```
@article{cheng2021hitab,
title={HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation},
author={Cheng, Zhoujun and Dong, Haoyu and Wang, Zhiruo and Jia, Ran and Guo, Jiaqi and Gao, Yan and Han, Shi and Lou, Jian-Guang and Zhang, Dongmei},
journal={arXiv preprint arXiv:2108.06712},
year={2021}
}