metadata
annotations_creators:
- expert-generated
- crowdsourced
language:
- en
language_creators:
- found
- crowdsourced
- expert-generated
license:
- c-uda
multilinguality:
- monolingual
paperswithcode_id: totto
pretty_name: HiTab
size_categories:
- 10K<n<100K
source_datasets:
- original
- extended|totto
tags: []
task_categories:
- table-to-text
- question-answering
task_ids: []
dataset_info:
features:
- name: id
dtype: string
- name: table_id
dtype: string
- name: table_source
dtype: string
- name: sentence_id
dtype: string
- name: sub_sentence_id
dtype: string
- name: sub_sentence
dtype: string
- name: question
dtype: string
- name: answer
dtype: large_string
- name: aggregation
dtype: large_string
- name: linked_cells
dtype: large_string
- name: answer_formulas
dtype: large_string
- name: reference_cells_map
dtype: large_string
- name: table_content
dtype: large_string
splits:
- name: train
num_bytes: 36419103
num_examples: 7417
- name: validation
num_bytes: 8312699
num_examples: 1671
- name: test
num_bytes: 7710891
num_examples: 1584
download_size: 6462957
dataset_size: 52442693
Dataset Card for HiTab
Dataset Description
- Homepage: https://www.microsoft.com/en-us/research/publication/hitab-a-hierarchical-table-dataset-for-question-answering-and-natural-language-generation/
- Repository: https://github.com/microsoft/HiTab/blob/main/LICENSE
- Paper: https://aclanthology.org/2022.acl-long.78/
Dataset Summary
HiTab is a dataset for question answering and data-to-text over hierarchical tables . It contains 10,672 samples and 3,597 tables from statistical reports (StatCan, NSF) and Wikipedia (ToTTo). 98.1% of the tables in HiTab are with hierarchies.
Supported Tasks and Leaderboards
Table-to-Text Generation, Question Answering
Languages
English
Data Instances
3,597 tables, 10,686 sentences
Data Splits
train, test, validation
Dataset Creation
During the dataset annotation process, annotators first manually collect tables and descriptive sentences highly-related to tables on statistical websites written by professional analysts. Then these descriptions are revised to questions to preserve the original meanings and analyses.
Licensing Information
This dataset follows the Computational Use of Data Agreement v1.0.
Citation Information
@article{cheng2021hitab,
title={HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation},
author={Cheng, Zhoujun and Dong, Haoyu and Wang, Zhiruo and Jia, Ran and Guo, Jiaqi and Gao, Yan and Han, Shi and Lou, Jian-Guang and Zhang, Dongmei},
journal={arXiv preprint arXiv:2108.06712},
year={2021}
}