File size: 4,559 Bytes
dfb3e84 159610c dfb3e84 159610c dfb3e84 159610c dfb3e84 159610c dfb3e84 159610c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
dataset_info:
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: chunks
sequence: string
- name: embeddings
sequence:
sequence: float32
splits:
- name: train
num_bytes: 5021489124
num_examples: 534044
download_size: 4750515911
dataset_size: 5021489124
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
language:
- cs
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
license:
- cc-by-sa-3.0
- gfdl
---
This dataset contains the Czech subset of the [`wikimedia/wikipedia`](https://huggingface.co/datasets/wikimedia/wikipedia) dataset. Each page is divided into paragraphs, stored as a list in the `chunks` column. For every paragraph, embeddings are created using the [`intfloat/multilingual-e5-base`](https://huggingface.co/intfloat/multilingual-e5-base) model.
## Usage
Load the dataset:
```python
from datasets import load_dataset
ds = load_dataset("karmiq/wikipedia-embeddings-cs-e5-base", split="train")
ds[1]
```
```
{
'id': '1',
'url': 'https://cs.wikipedia.org/wiki/Astronomie',
'title': 'Astronomie',
'chunks': [
'Astronomie, řecky αστρονομία z άστρον ( astron ) hvězda a νόμος ( nomos )...',
'Myšlenky Aristotelovy rozvinul ve 2. století našeho letopočtu Klaudios Ptolemaios...',
...,
],
'embeddings': [
[0.09006806463003159, -0.009814552962779999, ...],
[0.10767366737127304, ...],
...
]
}
```
The structure makes it easy to use the dataset for implementing semantic search.
<details>
<summary>Load the data in Elasticsearch</summary>
```python
def doc_generator(data, batch_size=1000):
for batch in data.with_format("numpy").iter(batch_size):
for i, id in enumerate(batch["id"]):
output = {"id": id}
output["title"] = batch["title"][i]
output["url"] = batch["url"][i]
output["parts"] = [
{ "chunk": chunk, "embedding": embedding }
for chunk, embedding in zip(batch["chunks"][i], batch["embeddings"][i])
]
yield output
num_indexed, num_failed = 0, 0,
progress = tqdm(total=ds.num_rows, unit="doc", desc="Indexing")
for ok, info in parallel_bulk(
es,
index="wikipedia-search",
actions=doc_generator(ds),
raise_on_error=False,
):
if not ok:
print(f"ERROR {info['index']['status']}: "
f"{info['index']['error']['type']}: {info['index']['error']['caused_by']['type']}: "
f"{info['index']['error']['caused_by']['reason'][:250]}")
progress.update(1)
```
</details>
<details>
<summary>Use <code>sentence_transformers.util.semantic_search</code></summary>
```python
import sentence_transformers
model = sentence_transformers.SentenceTransformer("intfloat/multilingual-e5-base")
ds.set_format(type="torch", columns=["embeddings"], output_all_columns=True)
# Flatten the dataset
def explode_sequence(batch):
output = { "id": [], "url": [], "title": [], "chunk": [], "embedding": [] }
for id, url, title, chunks, embeddings in zip(
batch["id"], batch["url"], batch["title"], batch["chunks"], batch["embeddings"]
):
output["id"].extend([id for _ in range(len(chunks))])
output["url"].extend([url for _ in range(len(chunks))])
output["title"].extend([title for _ in range(len(chunks))])
output["chunk"].extend(chunks)
output["embedding"].extend(embeddings)
return output
ds_flat = ds.map(
explode_sequence,
batched=True,
remove_columns=ds.column_names,
num_proc=min(os.cpu_count(), 32),
desc="Flatten")
ds_flat
query = "Čím se zabývá fyzika?"
hits = sentence_transformers.util.semantic_search(
query_embeddings=model.encode(query),
corpus_embeddings=ds_flat["embedding"],
top_k=10)
for hit in hits[0]:
title = ds_flat[hit['corpus_id']]['title']
chunk = ds_flat[hit['corpus_id']]['chunk']
print(f"[{hit['score']:0.2f}] {textwrap.shorten(chunk, width=100, placeholder='…')} [{title}]")
# [0.90] Fyzika částic ( též částicová fyzika ) je oblast fyziky, která se zabývá částicemi. V širším smyslu… [Fyzika částic]
# [0.89] Fyzika ( z řeckého φυσικός ( fysikos ): přírodní, ze základu φύσις ( fysis ): příroda, archaicky… [Fyzika]
# ...
```
</details>
The embeddings generation took about 2 hours on an NVIDIA A100 80GB GPU.
## License
See license of the original dataset: <https://huggingface.co/datasets/wikimedia/wikipedia>.
|