aes_enem_dataset / aes_enem_dataset.py
abarbosa's picture
include dataset generator script
4845aec
raw
history blame
21.1 kB
# Copyright 2023 Andre Barbosa, Igor Caetano Silveira & The HuggingFace Datasets Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import math
import os
import re
import datasets
import numpy as np
import pandas as pd
from bs4 import BeautifulSoup
from tqdm.auto import tqdm
np.random.seed(42) # Set the seed
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
TODO
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
_URLS = {
"sourceA": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceA.tar.gz?download=true",
}
PROMPTS_TO_IGNORE = [
"brasileiros-tem-pessima-educacao-argumentativa-segundo-cientista",
"carta-convite-discutir-discriminacao-na-escola",
"informacao-no-rotulo-de-produtos-transgenicos",
]
CSV_HEADER = [
"id",
"id_prompt",
"title",
"essay",
"grades",
"general",
"specific",
"essay_year",
]
class AesEnemDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.0.1")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="sourceA", version=VERSION, description="TODO"),
datasets.BuilderConfig(
name="sourceB",
version=VERSION,
description="TODO",
),
]
DEFAULT_CONFIG_NAME = "sourceA" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if (
self.config.name == "sourceA"
): # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"id": datasets.Value("string"),
"id_prompt": datasets.Value("string"),
"essay_title": datasets.Value("string"),
"essay_text": datasets.Value("string"),
"grades": datasets.Sequence(datasets.Value("int16")),
"essay_year": datasets.Value("int16"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
urls = _URLS[self.config.name]
extracted_files = dl_manager.download_and_extract({"sourceA": urls})
html_parser = self._process_html_files(extracted_files)
self._generate_splits(html_parser.sourceA)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
extracted_files["sourceA"], "sourceA", "train.csv"
),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
extracted_files["sourceA"], "sourceA", "validation.csv"
),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
extracted_files["sourceA"], "sourceA", "test.csv"
),
"split": "test",
},
),
]
def _process_html_files(self, paths_dict):
html_parser = HTMLParser(paths_dict)
html_parser.parse()
return html_parser
def _generate_splits(self, filepath: str, train_size=0.7):
def map_year(year):
if year <= 2017:
return "<=2017"
return str(year)
def normalize_grades(grades):
grades = grades.strip("[]").split(", ")
grade_mapping = {"0.0": 0, "20": 40}
# We will remove the rows that match the criteria below
if any(
single_grade in grades
for single_grade in ["50", "100", "150", "0.5", "1.0", "1.5"]
):
return None
# Use the mapping to transform grades, ignoring the last grade
mapped_grades = [
int(grade_mapping.get(grade_concept, grade_concept))
for grade_concept in grades[:-1]
]
# Calculate and append the sum of the mapped grades as the last element
mapped_grades.append(sum(mapped_grades))
return mapped_grades
df = pd.read_csv(filepath)
df["general"] = df["general"].fillna("")
df["essay_year"] = df["essay_year"].astype("int")
df["mapped_year"] = df["essay_year"].apply(map_year)
df["grades"] = df["grades"].apply(normalize_grades)
df = df.dropna()
buckets = df.groupby("mapped_year")["id_prompt"].unique().to_dict()
df.drop('mapped_year', axis=1, inplace=True)
train_set = []
val_set = []
test_set = []
for year, prompts in buckets.items():
np.random.shuffle(prompts)
num_prompts = len(prompts)
# All prompts go to the test if less than 3
if num_prompts <= 3:
train_set.append(df[df["id_prompt"].isin([prompts[0]])])
val_set.append(df[df["id_prompt"].isin([prompts[1]])])
test_set.append(df[df["id_prompt"].isin([prompts[2]])])
continue
# Determine the number of prompts for each set based on train_size and remaining prompts
num_train = math.floor(num_prompts * train_size)
num_val_test = num_prompts - num_train
num_val = num_val_test // 2
num_test = num_val_test - num_val
# Assign prompts to each set
train_set.append(df[df["id_prompt"].isin(prompts[:num_train])])
val_set.append(
df[df["id_prompt"].isin(prompts[num_train : (num_train + num_val)])]
)
test_set.append(
df[
df["id_prompt"].isin(
prompts[
(num_train + num_val) : (num_train + num_val + num_test)
]
)
]
)
# Convert lists of groups to DataFrames
train_df = pd.concat(train_set)
val_df = pd.concat(val_set)
test_df = pd.concat(test_set)
# Data Validation Assertions
assert (
len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0
), "Overlap between train and val id_prompt"
assert (
len(set(train_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
), "Overlap between train and test id_prompt"
assert (
len(set(val_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
), "Overlap between val and test id_prompt"
dirname = os.path.dirname(filepath)
train_df.to_csv(f"{dirname}/train.csv", index=False)
val_df.to_csv(f"{dirname}/validation.csv", index=False)
test_df.to_csv(f"{dirname}/test.csv", index=False)
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
if self.config.name == "sourceA":
with open(filepath, encoding="utf-8") as csvfile:
next(csvfile)
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER)
for i, row in enumerate(csv_reader):
grades = row["grades"].strip("[]").split(", ")
yield i, {
"id": row["id"],
"id_prompt": row["id_prompt"],
"essay_title": row["title"],
"essay_text": row["essay"],
"grades": grades,
"essay_year": row["essay_year"],
}
class HTMLParser:
def __init__(self, paths_dict):
self.paths_dict = paths_dict
self.sourceA = None
self.sourceB = None
def apply_soup(self, filepath, num):
# recebe uma URL, salva o HTML dessa página e retorna o soup dela
file = open(os.path.join(filepath, num), "r", encoding="utf8")
conteudo = file.read()
soup = BeautifulSoup(conteudo, "html.parser")
return soup
@staticmethod
def _get_title(soup):
title = soup.find("div", class_="container-composition")
if title is None:
title = soup.find("h1", class_="pg-color10").get_text()
else:
title = title.h2.get_text()
title = title.replace("\xa0", "")
return title
@staticmethod
def _get_grades(soup):
grades = soup.find("section", class_="results-table")
final_grades = []
if grades is not None:
grades = grades.find_all("span", class_="points")
assert len(grades) == 6, f"Missing grades: {len(grades)}"
for single_grade in grades:
grade = int(single_grade.get_text())
final_grades.append(grade)
assert final_grades[-1] == sum(
final_grades[:-1]
), "Grading sum is not making sense"
else:
grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7")
grades_sum = float(
soup.find("th", class_="noBorder-left").get_text().replace(",", ".")
)
grades = grades.find_all("td")[:10]
for idx in range(1, 10, 2):
grade = float(grades[idx].get_text().replace(",", "."))
final_grades.append(grade)
assert grades_sum == sum(final_grades), "Grading sum is not making sense"
final_grades.append(grades_sum)
return final_grades
@staticmethod
def _get_general_comment(soup):
def get_general_comment_aux(soup):
result = soup.find("article", class_="list-item c")
if result is not None:
result = result.find("div", class_="description")
return result.get_text()
else:
result = soup.find("p", style="margin: 0px 0px 11px;")
if result is not None:
return result.get_text()
else:
result = soup.find("p", style="margin: 0px;")
if result is not None:
return result.get_text()
else:
result = soup.find(
"p", style="margin: 0px; text-align: justify;"
)
if result is not None:
return result.get_text()
else:
return ""
text = soup.find("div", class_="text")
if text is not None:
text = text.find("p")
if (text is None) or (len(text.get_text()) < 2):
return get_general_comment_aux(soup)
return text.get_text()
else:
return get_general_comment_aux(soup)
@staticmethod
def _get_specific_comment(soup):
result = soup.find("div", class_="text")
if result is not None:
result = result.find_all("li")
cms = []
if result != []:
for item in result:
text = item.get_text()
if text != "\xa0":
cms.append(text)
return cms
else:
result = soup.find("div", class_="text").find_all("p")
for item in result:
text = item.get_text()
if text != "\xa0":
cms.append(text)
return cms
else:
result = soup.find_all("article", class_="list-item c")
if len(result) < 2:
return ["First if"]
result = result[1].find_all("p")
cms = []
for item in result:
text = item.get_text()
if text != "\xa0":
cms.append(text)
return cms
@staticmethod
def _get_essay(soup):
essay = soup.find("div", class_="text-composition")
if essay is not None:
essay = essay.find_all("p")
for f in essay:
while f.find("span", style="color:#00b050") is not None:
f.find("span", style="color:#00b050").decompose()
while f.find("span", class_="certo") is not None:
f.find("span", class_="certo").decompose()
result = []
for paragraph in essay:
result.append(paragraph.get_text())
return result
else:
essay = soup.find("div", {"id": "texto"})
essay.find("section", class_="list-items").decompose()
essay = essay.find_all("p")
for f in essay:
while f.find("span", class_="certo") is not None:
f.find("span", class_="certo").decompose()
result = []
for paragraph in essay:
result.append(paragraph.get_text())
return result
@staticmethod
def _get_essay_year(soup):
pattern = r"redações corrigidas - \w+/\d+"
first_occurrence = re.search(pattern, soup.get_text().lower())
matched_url = first_occurrence.group(0) if first_occurrence else None
year_pattern = r"\d{4}"
return re.search(year_pattern, matched_url).group(0)
def _clean_title(self, title):
smaller_index = title.find("[")
if smaller_index == -1:
return title
else:
bigger_index = title.find("]")
new_title = title[:smaller_index] + title[bigger_index + 1 :]
return self._clean_title(new_title.replace(" ", " "))
def _clean_list(self, list):
if list == []:
return []
else:
new_list = []
for phrase in list:
phrase = (
phrase.replace("\xa0", "").replace(" ,", ",").replace(" .", ".")
)
while phrase.find(" ") != -1:
phrase = phrase.replace(" ", " ")
if len(phrase) > 1:
new_list.append(phrase)
return new_list
def parse(self):
for key, filepath in self.paths_dict.items():
full_path = os.path.join(filepath, key)
if key == "sourceA":
self.sourceA = f"{full_path}/sourceA.csv"
with open(
f"{full_path}/{key}.csv", "w", newline="", encoding="utf8"
) as final_file:
writer = csv.writer(final_file)
writer.writerow(CSV_HEADER)
sub_folders = [
name for name in os.listdir(full_path) if not name.endswith(".csv")
]
essay_id = 0
essay_title = None
essay_text = None
essay_grades = None
general_comment = None
specific_comment = None
essay_year = None
for prompt_folder in tqdm(
sub_folders,
desc=f"Parsing HTML files from: {key}",
total=len(sub_folders),
):
if prompt_folder in PROMPTS_TO_IGNORE:
continue
prompt = os.path.join(full_path, prompt_folder)
prompt_essays = [name for name in os.listdir(prompt)]
prompt_essays = prompt_essays[:-1]
essay_year = HTMLParser._get_essay_year(
self.apply_soup(prompt, "Prompt.html")
)
for essay in prompt_essays:
soup_text = self.apply_soup(prompt, essay)
if essay == "Prompt.html":
continue
essay_title = self._clean_title(
HTMLParser._get_title(soup_text).replace(";", ",")
)
essay_grades = HTMLParser._get_grades(soup_text)
general_comment = HTMLParser._get_general_comment(
soup_text
).strip()
specific_comment = HTMLParser._get_specific_comment(soup_text)
if general_comment in specific_comment:
specific_comment.remove(general_comment)
if (len(specific_comment) > 1) and (
len(specific_comment[0]) < 2
):
specific_comment = specific_comment[1:]
essay_text = self._clean_list(HTMLParser._get_essay(soup_text))
specific_comment = self._clean_list(specific_comment)
writer.writerow(
[
essay,
prompt_folder,
essay_title,
essay_text,
essay_grades,
general_comment,
specific_comment,
essay_year,
]
)
essay_id += 1