tweet_id
stringlengths
10
18
label
class label
2 classes
label_confidence
float32
0.62
1
506938088174940160
1yes
1
302221719412830209
1yes
1
289761704907268096
1yes
1
513820885032378369
1yes
1
510026131366744064
1yes
1
404051933868351488
1yes
1
338756360097366019
1yes
1
330653192935333889
1yes
1
502973784627085312
1yes
1
450630102536052736
1yes
1
344121864790097920
1yes
1
400956977305497603
1yes
1
478879804838531072
1yes
1
361841952569819138
1yes
1
355403608977702912
1yes
1
499464920975409152
1yes
1
291591788035194880
1yes
1
329948561062121473
1yes
1
503544189762564098
1yes
1
494444397463740416
1yes
1
305402735220641792
1yes
1
440811398109880320
1yes
1
341878727128514560
1yes
1
334276697430036481
1yes
1
383331550667886592
1yes
1
383331868268957697
1yes
1
492571953652170753
1yes
1
436958440351887363
1yes
1
351953890905825280
1yes
1
209128553768431616
1yes
1
252480962292764672
1yes
1
252489939084791810
1yes
1
271287542786183169
1yes
1
111576265626107905
1yes
1
342646048872882176
1yes
1
326943701651820544
1yes
1
142128451107831808
1yes
1
202029320204599297
1yes
1
387612277169348608
1yes
1
496168816833884160
1yes
1
509502667006021632
1yes
1
426776928666677248
1yes
1
425576541393661952
1yes
1
407039839431712768
1yes
1
435371471872200704
1yes
1
496160048523923456
1yes
1
413926451742638081
1yes
1
408564297153794048
1yes
1
433888575428390913
1yes
1
405604354586984448
1yes
1
509097133111525376
1yes
1
412490641587728384
1yes
1
413629498802700288
1yes
1
422260948011716608
1yes
1
487189789318197249
1yes
1
447192845863387136
1yes
1
493636277099454464
1yes
1
513784585453199360
1yes
1
514100370457382912
1yes
1
515040326575063040
1yes
1
515652251163967488
1yes
1
514689131725615104
1yes
1
514597936492068864
1yes
1
513484880865288192
1yes
1
514970521914466305
1yes
1
514164430246907904
1yes
1
513586491419664384
1yes
1
514324000051171328
1yes
1
513442805314621440
1yes
1
514168510730100736
1yes
1
513078131792441346
1yes
1
514479401497411584
1yes
1
514168501880111104
1yes
1
514411490418257920
1yes
1
514349649281314816
1yes
1
514152266157137920
1yes
1
514306198506467328
1yes
1
513442121492082688
1yes
1
513888078964871168
1yes
1
514365040141418497
1yes
1
514172548368437248
1yes
1
514033021939220480
1yes
1
513459074126450688
1yes
1
515586815772745728
1yes
1
414083968947216384
1yes
1
450747780340781056
1yes
1
450962351085203456
1yes
1
505070038475227137
1yes
1
302861596554842112
1yes
1
373880014925602816
1yes
1
361488835911233536
1yes
1
425308710177886208
1yes
1
378451839244447744
1yes
1
390009600113508352
1yes
1
388540520651554816
1yes
1
379437270475886592
1yes
1
408114374058864641
1yes
1
294403715492896768
1yes
1
486873521402834944
1yes
1
475239415543889920
1yes
1

Dataset Card for journalists_questions

Dataset Summary

The journalists_questions dataset supports question identification over Arabic tweets of journalists.

Supported Tasks and Leaderboards

[More Information Needed]

Languages

Arabic

Dataset Structure

Data Instances

Our dataset supports question identification task. It includes 10K Arabic tweets crawled from journalists accounts. Tweets were labelled by crowdsourcing. Each tweet is associated with one label: question tweet or not. A question tweet is a tweet that has at least one interrogative question. Each label is associated with a number that represents the confidence in the label, given that each tweet was labelled by 3 annotators and an aggregation method was followed to choose the final label. Below is an example: { 'tweet_id': '493235142128074753', 'label': 'yes', 'label_confidence':0.6359 }

Data Fields

tweet_id: the Twitter assigned ID for the tweet object. label: annotation of the tweet by whether it is a question or not label_confidence: confidence score for the label given annotations of multiple annotators per tweet

Data Splits

[More Information Needed]

Dataset Creation

Curation Rationale

The dataset includes tweet IDs only due to Twitter content re-distribution policy. It was created and shared for research purposes for parties interested in understanding questions expecting answers by Arab journalists on Twitter.

Source Data

Initial Data Collection and Normalization

To construct our dataset of question tweets posted by journalists, we first acquire a list of Twitter accounts of 389 Arab journalists. We use the Twitter API to crawl their available tweets, keeping only those that are identified by Twitter to be both Arabic, and not retweets (as these would contain content that was not originally authored by journalists). We apply a rule-based question filter to this dataset of 465,599 tweets, extracting 49,119 (10.6%) potential question tweets from 363 (93.3%) Arab journalists.

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

[More Information Needed]

Contributions

Thanks to @MaramHasanain for adding this dataset.

Downloads last month
54

Models trained or fine-tuned on community-datasets/journalists_questions