Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
File size: 7,523 Bytes
e9aab75 1ce17d5 49d665a e9aab75 1ce17d5 e9aab75 f82197a f22f65b e9aab75 1ce17d5 e9aab75 f22f65b e9aab75 f82197a e9aab75 f82197a e9aab75 ee65240 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) dataset"""
import os
import numpy as np
from tqdm import tqdm
import datasets
_CITATION = """\
@inproceedings{harley2015icdar,
title = {Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval},
author = {Adam W Harley and Alex Ufkes and Konstantinos G Derpanis},
booktitle = {International Conference on Document Analysis and Recognition ({ICDAR})}},
year = {2015}
}
"""
_DESCRIPTION = """\
The RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) dataset consists of 400,000 grayscale images in 16 classes, with 25,000 images per class. There are 320,000 training images, 40,000 validation images, and 40,000 test images.
"""
_HOMEPAGE = "https://www.cs.cmu.edu/~aharley/rvl-cdip/"
_LICENSE = "https://www.industrydocuments.ucsf.edu/help/copyright/"
_URLS = {
"rvl-cdip": "https://huggingface.co/datasets/rvl_cdip/resolve/main/data/rvl-cdip.tar.gz",
}
_METADATA_URLS = {
"train": "https://huggingface.co/datasets/rvl_cdip/resolve/main/data/train.txt",
"test": "https://huggingface.co/datasets/rvl_cdip/resolve/main/data/test.txt",
"val": "https://huggingface.co/datasets/rvl_cdip/resolve/main/data/val.txt",
}
_CLASSES = [
"letter",
"form",
"email",
"handwritten",
"advertisement",
"scientific report",
"scientific publication",
"specification",
"file folder",
"news article",
"budget",
"invoice",
"presentation",
"questionnaire",
"resume",
"memo",
]
_IMAGES_DIR = "images/"
class OCRConfig(datasets.BuilderConfig):
"""BuilderConfig for RedCaps."""
def __init__(self, name, **kwargs):
"""BuilderConfig for RedCaps.
Args:
**kwargs: keyword arguments forwarded to super.
"""
assert "description" not in kwargs
super(OCRConfig, self).__init__(
version=datasets.Version("1.0.0", ""), name=name, **kwargs
)
class RvlCdip_EasyOcr(datasets.GeneratorBasedBuilder):
"""Ryerson Vision Lab Complex Document Information Processing dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [OCRConfig("default")]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"image": datasets.Image(),
"label": datasets.ClassLabel(names=_CLASSES),
"words": datasets.Sequence(datasets.Value("string")),
"boxes": datasets.Sequence(
datasets.Sequence(datasets.Value("int32"))
),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
if self.config.data_files:
archive_path = self.config.data_files["binary"][0]
else:
archive_path = dl_manager.download(
_URLS["rvl-cdip"]
) # only download images if need be
labels_path = dl_manager.download(_METADATA_URLS)
from pdb import set_trace
set_trace()
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"archive_iterator": dl_manager.iter_archive(archive_path),
"labels_filepath": labels_path["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"archive_iterator": dl_manager.iter_archive(archive_path),
"labels_filepath": labels_path["test"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"archive_iterator": dl_manager.iter_archive(archive_path),
"labels_filepath": labels_path["val"],
"split": "validation",
},
),
]
@staticmethod
def _get_image_to_class_map(data):
image_to_class_id = {}
for item in data:
image_path, class_id = item.split(" ")
image_path = os.path.join(_IMAGES_DIR, image_path)
image_to_class_id[image_path] = int(class_id)
return image_to_class_id
@staticmethod
def _get_image_to_OCR(OCR_dir, split):
def parse_easyOCR_box(box):
# {'x0': 39, 'y0': 39, 'x1': 498, 'y1': 82, 'width': 459, 'height': 43}
return (box["x0"], box["y0"], box["x1"], box["y1"])
if OCR_dir is None:
return {}
image_to_OCR = {}
data = np.load(
os.path.join(OCR_dir, f"Easy_{split[0].upper()+split[1:]}_Data.npy"),
allow_pickle=True,
)
for ex in tqdm(data, desc="Loading OCR data"):
w, h = ex["images"][0]["image_width"], ex["images"][0]["image_height"]
filename = ex["images"][0]["file_name"]
words = ex["word-level annotations"][0]["ocred_text"]
box_info = ex["word-level annotations"][0]["ocred_boxes"]
boxes = [parse_easyOCR_box(box) for box in box_info]
assert len(boxes) == len(words)
image_to_OCR[filename] = (words, boxes)
return image_to_OCR
@staticmethod
def _path_to_OCR(image_to_OCR, file_path):
# obtain text and boxes given file_path
words, boxes = None, None
if file_path in image_to_OCR:
words, boxes = image_to_OCR[file_path]
return words, boxes
def _generate_examples(self, archive_iterator, labels_filepath, split):
with open(labels_filepath, encoding="utf-8") as f:
data = f.read().splitlines()
image_to_OCR = self._get_image_to_OCR(self.config.data_dir, split)
image_to_class_id = self._get_image_to_class_map(data)
for file_path, file_obj in archive_iterator:
if file_path.startswith(_IMAGES_DIR):
if file_path in image_to_class_id:
class_id = image_to_class_id[file_path]
label = _CLASSES[class_id]
words, boxes = self._path_to_OCR(image_to_OCR, file_path)
a = dict(
id=file_path,
image={"path": file_path, "bytes": file_obj.read()},
label=label,
words=words,
boxes=boxes,
)
yield file_path, a
|