File size: 6,840 Bytes
9875014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10355f2
 
 
 
 
 
 
 
 
9875014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10355f2
 
 
 
 
 
 
9875014
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DUDE dataset loader"""

import os
import copy
import json
from pathlib import Path
from typing import List
import pdf2image
from tqdm import tqdm


import datasets


_CITATION = """
@inproceedings{dude2023icdar,
    title={ICDAR 2023 Challenge on Document UnderstanDing of Everything (DUDE)},
    author={Van Landeghem, Jordy  et . al.},
    booktitle={Proceedings of the ICDAR},
    year={2023}
}
"""

_DESCRIPTION = """\
DUDE requires models to reason and understand about document layouts in multi-page images/PDFs to answer questions about them.
Specifically, models need to incorporate a new modality of layout present in the images/PDFs and reason
over it to answer DUDE questions. DUDE Contains X questions and Y and ...
"""

_HOMEPAGE = "https://rrc.cvc.uab.es/?ch=23"

_LICENSE = "CC BY 4.0"

_SPLITS = ["sample"]  # ["train", "val", "test"]

_URLS = {}
for split in _SPLITS:
    _URLS[
        f"{split}_annotations"
    ] = f"https://huggingface.co/datasets/jordyvl/DUDE_loader/resolve/main/data/DUDE_{split}_dataset.json"
    _URLS[
        f"{split}_pdfs"
    ] = f"https://huggingface.co/datasets/jordyvl/DUDE_loader/resolve/main/data/DUDE_{split}_pdfs.tar.gz"
    _URLS[
        f"{split}_OCR"
    ] = f"https://huggingface.co/datasets/jordyvl/DUDE_loader/resolve/main/data/DUDE_{split}_OCR.tar.gz"


def batched_conversion(pdf_file):
    info = pdf2image.pdfinfo_from_path(pdf_file, userpw=None, poppler_path=None)
    maxPages = info["Pages"]

    logger.info(f"{pdf_file} has {str(maxPages)} pages")

    images = []

    for page in range(1, maxPages + 1, 10):
        images.extend(
            pdf2image.convert_from_path(
                pdf_file, dpi=200, first_page=page, last_page=min(page + 10 - 1, maxPages)
            )
        )
    return images


def open_pdf_binary(pdf_file):
    with open(pdf_file, "rb") as f:
        return f.read()


class DUDE(datasets.GeneratorBasedBuilder):
    """DUDE dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="DUDE",
            version=datasets.Version("0.0.1"),
            description=_DESCRIPTION,
        )
    ]

    DEFAULT_CONFIG_NAME = "DUDE"

    def _info(self):

        features = datasets.Features(
            {
                "docId": datasets.Value("string"),
                "questionId": datasets.Value("string"),
                "question": datasets.Value("string"),
                "answers": datasets.Sequence(datasets.Value("string")),
                "answers_page_bounding_boxes": datasets.Sequence(
                    {
                        "left": datasets.Value("int32"),
                        "top": datasets.Value("int32"),
                        "width": datasets.Value("int32"),
                        "height": datasets.Value("int32"),
                        "page": datasets.Value("int32"),
                    }
                ),
                "answers_variants": datasets.Sequence(datasets.Value("string")),
                "answer_type": datasets.Value("string"),
                "data_split": datasets.Value("string"),
                "document": datasets.Value("binary"),
                "OCR": datasets.Value("binary"),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:

        splits = []
        for split in _SPLITS:
            annotations = {}
            if f"{split}_annotations" in _URLS:  # blind test set
                annotations = json.load(open(_URLS[f"{split}_annotations"], "r"))
            pdfs_archive_path = dl_manager.download(_URLS[f"{split}_pdfs"])
            pdfs_archive = dl_manager.iter_archive(pdfs_archive_path)
            OCR_archive_path = dl_manager.download(_URLS[f"{split}_OCR"])
            OCR_archive = dl_manager.iter_archive(OCR_archive_path)
            splits.append(
                datasets.SplitGenerator(
                    name=split,
                    gen_kwargs={
                        "pdfs_archive": pdfs_archive,
                        "OCR_archive": OCR_archive,
                        "annotations": annotations,
                        "split": split,
                    },
                )
            )
        return splits

    def _generate_examples(self, pdfs_archive, OCR_archive, annotations, split):
        def retrieve_doc(pdfs_archive, docid):
            for file_path, file_obj in pdfs_archive:
                path, ext = file_path.split(".")
                md5 = path.split("/")[-1]

                if md5 == docid:
                    # images = pdf2image.convert_from_bytes(file_obj.read())
                    return file_obj.read()  # binary

        def retrieve_OCR(OCR_archive, docid):
            for file_path, file_obj in OCR_archive:
                # /DUDE_sample_OCR/OCR/Amazon Textract/md5_{original,due}.json
                path, ext = file_path.split(".")
                filename = path.split("/")[-1]
                md5 = filename.split("_")[0]

                if md5 == docid and "original" in filename:
                    return json.loads(file_obj.read())  # binary

        question = self.info.features["question"]
        answers = self.info.features["answers"]

        extensions = {"pdf", "PDF"}

        for i, a in enumerate(annotations):
            a["data_split"] = split
            a["document"] = retrieve_doc(pdfs_archive, a["docId"])
            a["OCR"] = retrieve_OCR(OCR_archive, a["docId"])

            # FIXES for faulty generation
            #a.pop("answers_page_bounding_boxes")  # fix later            
            if a["answers_page_bounding_boxes"] in [ [], [[]] ]:
                a["answers_page_bounding_boxes"] = None
            else:
                if isinstance(a['answers_page_bounding_boxes'][0], list):
                    a["answers_page_bounding_boxes"] = a['answers_page_bounding_boxes'][0]                    
            yield i, a