Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-label-classification
Languages:
English
Size:
10K - 100K
License:
File size: 5,085 Bytes
28fdde1 ad7d903 28fdde1 d5b55d2 28fdde1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""EURLEX57K contains 57k legislative documents in English from EUR-Lex portal, annotated with EUROVOC concepts."""
import json
import os
import datasets
_CITATION = """\
@inproceedings{chalkidis-etal-2019-large,
title = "Large-Scale Multi-Label Text Classification on {EU} Legislation",
author = "Chalkidis, Ilias and Fergadiotis, Emmanouil and Malakasiotis, Prodromos and Androutsopoulos, Ion",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-1636",
doi = "10.18653/v1/P19-1636",
pages = "6314--6322"
}
"""
_DESCRIPTION = """\
EURLEX57K contains 57k legislative documents in English from EUR-Lex portal, annotated with EUROVOC concepts.
"""
_HOMEPAGE = "http://nlp.cs.aueb.gr/software_and_datasets/EURLEX57K/"
_LICENSE = "CC BY-SA (Creative Commons / Attribution-ShareAlike)"
_URLs = {
"eurlex57k": "http://archive.org/download/EURLEX57K/dataset.zip",
}
class EURLEX(datasets.GeneratorBasedBuilder):
"""EURLEX57K contains 57k legislative documents in English from EUR-Lex portal, annotated with EUROVOC concepts."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="eurlex57k", version=VERSION, description="EURLEX57K: Legal Multi-label Text Classification"
),
]
DEFAULT_CONFIG_NAME = "eurlex57k"
def _info(self):
features = datasets.Features(
{
"celex_id": datasets.Value("string"),
"title": datasets.Value("string"),
"text": datasets.Value("string"),
"eurovoc_concepts": datasets.features.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl"), "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "dev.jsonl"),
"split": "dev",
},
),
]
def _generate_examples(
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
"""Yields examples as (key, example) tuples."""
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
yield id_, {
"celex_id": data["celex_id"],
"title": data["title"],
"text": data["header"] + "\n" + data["recitals"],
"eurovoc_concepts": data["eurovoc_concepts"],
}
|