newyorker_caption_contest / newyorker_caption_contest.py
jmhessel's picture
Upload newyorker_caption_contest.py
801f63d
raw
history blame
15.7 kB
# coding=utf-8
# Lint as: python3
"""The Caption Contest benchmark."""
import json
import os
import datasets
import base64
import pprint
_CAPTION_CONTEST_TASKS_CITATION = """\
@article{hessel2022androids,
title={Do Androids Laugh at Electric Sheep? Humor" Understanding" Benchmarks from The New Yorker Caption Contest},
author={Hessel, Jack and Marasovi{\'c}, Ana and Hwang, Jena D and Lee, Lillian and Da, Jeff and Zellers, Rowan and Mankoff, Robert and Choi, Yejin},
journal={arXiv preprint arXiv:2209.06293},
year={2022}
}
www.capcon.dev
Our data contributions are:
- The cartoon-level annotations;
- The joke explanations;
- and the framing of the tasks
We release these data we contribute under CC-BY (see DATASET_LICENSE).
If you find this data useful in your work, in addition to citing our contributions, please also cite the following, from which the cartoons/captions in our corpus are derived:
@misc{newyorkernextmldataset,
author={Jain, Lalit and Jamieson, Kevin and Mankoff, Robert and Nowak, Robert and Sievert, Scott},
title={The {N}ew {Y}orker Cartoon Caption Contest Dataset},
year={2020},
url={https://nextml.github.io/caption-contest-data/}
}
@inproceedings{radev-etal-2016-humor,
title = "Humor in Collective Discourse: Unsupervised Funniness Detection in The {New Yorker} Cartoon Caption Contest",
author = "Radev, Dragomir and
Stent, Amanda and
Tetreault, Joel and
Pappu, Aasish and
Iliakopoulou, Aikaterini and
Chanfreau, Agustin and
de Juan, Paloma and
Vallmitjana, Jordi and
Jaimes, Alejandro and
Jha, Rahul and
Mankoff, Robert",
booktitle = "LREC",
year = "2016",
}
@inproceedings{shahaf2015inside,
title={Inside jokes: Identifying humorous cartoon captions},
author={Shahaf, Dafna and Horvitz, Eric and Mankoff, Robert},
booktitle={KDD},
year={2015},
}
"""
_CAPTION_CONTEST_DESCRIPTION = """\
There are 3 caption contest tasks, described in the paper. In the Matching multiple choice task, models must recognize a caption written about a cartoon (vs. options that were not). In the Quality Ranking task, models must evaluate the quality
of that caption by scoring it more highly than a lower quality option from the same contest. In the Explanation Generation task, models must explain why the joke is funny.
"""
_MATCHING_DESCRIPTION = """\
You are given a cartoon and 5 captions. Only one of the captions was truly written about the cartoon. You must select it.
"""
_RANKING_DESCRIPTION = """\
You are given a cartoon and 2 captions. One of the captions was selected by crowd voting or New Yorker editors as high quality. You must select it.
"""
_EXPLANATION_DESCRIPTION = """\
You are given a cartoon and a caption that was written about it. You must autoregressively generate a joke explanation.
"""
_IMAGES_URL = "https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/all_contest_images.zip"
def _get_configs_crossvals():
cross_val_configs = []
for split_idx in [1,2,3,4]:
cur_split_configs = [
CaptionContestConfig(
name='matching_{}'.format(split_idx),
description=_MATCHING_DESCRIPTION,
features=[
'image',
'contest_number',
'image_location',
'image_description',
'image_uncanny_description',
'entities',
'questions',
'caption_choices',
'from_description',
],
label_classes=["A", "B", "C", "D", "E"],
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/matching_{}.zip'.format(split_idx),
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
CaptionContestConfig(
name='matching_from_pixels_{}'.format(split_idx),
description=_MATCHING_DESCRIPTION,
features=[
'image',
'contest_number',
'caption_choices',
],
label_classes=["A", "B", "C", "D", "E"],
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/matching_from_pixels_{}.zip'.format(split_idx),
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
CaptionContestConfig(
name='ranking_{}'.format(split_idx),
description=_RANKING_DESCRIPTION,
features=[
'image',
'contest_number',
'image_location',
'image_description',
'image_uncanny_description',
'entities',
'questions',
'caption_choices',
'from_description',
'winner_source',
],
label_classes=["A", "B"],
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/ranking_{}.zip'.format(split_idx),
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
CaptionContestConfig(
name='ranking_from_pixels_{}'.format(split_idx),
description=_RANKING_DESCRIPTION,
features=[
'image',
'contest_number',
'caption_choices',
'winner_source',
],
label_classes=["A", "B"],
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/ranking_from_pixels_{}.zip'.format(split_idx),
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
CaptionContestConfig(
name='explanation_{}'.format(split_idx),
description=_EXPLANATION_DESCRIPTION,
features=[
'image',
'contest_number',
'image_location',
'image_description',
'image_uncanny_description',
'entities',
'questions',
'caption_choices',
'from_description',
],
label_classes=None,
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/explanation_{}.zip'.format(split_idx),
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
CaptionContestConfig(
name='explanation_from_pixels_{}'.format(split_idx),
description=_EXPLANATION_DESCRIPTION,
features=[
'image',
'contest_number',
'caption_choices',
],
label_classes=None,
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/explanation_from_pixels_{}.zip'.format(split_idx),
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
]
cross_val_configs.extend(cur_split_configs)
return cross_val_configs
class CaptionContestConfig(datasets.BuilderConfig):
"""BuilderConfig for Caption Contest."""
def __init__(self, features, data_url, citation, url, label_classes=None, **kwargs):
"""BuilderConfig for Caption Contest.
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
data_url: `string`, url to download the zip file from.
citation: `string`, citation for the data set.
url: `string`, url for information about the data set.
label_classes: `list[string]`, the list of classes for the label if the
label is present as a string. If not provided, there is no fixed label set.
**kwargs: keyword arguments forwarded to super.
"""
super(CaptionContestConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.features = features
self.data_url = data_url
self.citation = citation
self.url = url
self.label_classes = label_classes
class CaptionContest(datasets.GeneratorBasedBuilder):
"""The CaptionContest benchmark."""
BUILDER_CONFIGS = [
CaptionContestConfig(
name='matching',
description=_MATCHING_DESCRIPTION,
features=[
'image',
'contest_number',
'image_location',
'image_description',
'image_uncanny_description',
'entities',
'questions',
'caption_choices',
'from_description',
],
label_classes=["A", "B", "C", "D", "E"],
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/matching.zip',
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
CaptionContestConfig(
name='matching_from_pixels',
description=_MATCHING_DESCRIPTION,
features=[
'image',
'contest_number',
'caption_choices',
],
label_classes=["A", "B", "C", "D", "E"],
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/matching_from_pixels.zip',
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
CaptionContestConfig(
name='ranking',
description=_RANKING_DESCRIPTION,
features=[
'image',
'contest_number',
'image_location',
'image_description',
'image_uncanny_description',
'entities',
'questions',
'caption_choices',
'from_description',
'winner_source',
],
label_classes=["A", "B"],
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/ranking.zip',
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
CaptionContestConfig(
name='ranking_from_pixels',
description=_RANKING_DESCRIPTION,
features=[
'image',
'contest_number',
'caption_choices',
'winner_source',
],
label_classes=["A", "B"],
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/ranking_from_pixels.zip',
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
CaptionContestConfig(
name='explanation',
description=_EXPLANATION_DESCRIPTION,
features=[
'image',
'contest_number',
'image_location',
'image_description',
'image_uncanny_description',
'entities',
'questions',
'caption_choices',
'from_description',
],
label_classes=None,
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/explanation.zip',
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
CaptionContestConfig(
name='explanation_from_pixels',
description=_EXPLANATION_DESCRIPTION,
features=[
'image',
'contest_number',
'caption_choices',
],
label_classes=None,
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/explanation_from_pixels.zip',
url='www.capcon.dev',
citation=_CAPTION_CONTEST_TASKS_CITATION,
),
] + _get_configs_crossvals()
def _info(self):
features = {feature: datasets.Value("string") for feature in self.config.features}
# things are strings except for contest_number, entities, questions, and caption choices (if not explanation)
features['contest_number'] = datasets.Value("int32")
if 'explanation' not in self.config.name:
features['caption_choices'] = datasets.features.Sequence(datasets.Value("string"))
if 'entities' in features:
features['entities'] = datasets.features.Sequence(datasets.Value("string"))
if 'questions' in features:
features['questions'] = datasets.features.Sequence(datasets.Value("string"))
if 'image' in features:
features['image'] = datasets.Image()
features['label'] = datasets.Value("string")
features['n_tokens_label'] = datasets.Value("int32")
features['instance_id'] = datasets.Value("string")
return datasets.DatasetInfo(
description=_CAPTION_CONTEST_DESCRIPTION + self.config.description,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
self.images_dir = dl_manager.download_and_extract(_IMAGES_URL)
task_name = _get_task_name_from_data_url(self.config.data_url)
dl_dir = os.path.join(dl_dir, task_name)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(dl_dir, "train.jsonl"),
"split": datasets.Split.TRAIN,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": os.path.join(dl_dir, "val.jsonl"),
"split": datasets.Split.VALIDATION,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": os.path.join(dl_dir, "test.jsonl"),
"split": datasets.Split.TEST,
},
),
]
def _generate_examples(self, data_file, split):
with open(data_file, encoding="utf-8") as f:
for line in f:
row = json.loads(line)
with open(self.images_dir + "/all_contest_images/{}.jpeg".format(row['contest_number']), "rb") as image:
row['image'] = {"path": self.images_dir + "/all_contest_images/{}.jpeg".format(row['contest_number']),
"bytes": image.read()}
yield row['instance_id'], row
def _get_task_name_from_data_url(data_url):
return data_url.split("/")[-1].split(".")[0]