|
|
|
|
|
"""The Caption Contest benchmark.""" |
|
|
|
|
|
import json |
|
import os |
|
import datasets |
|
import base64 |
|
import pprint |
|
|
|
|
|
_CAPTION_CONTEST_TASKS_CITATION = """\ |
|
@article{hessel2022androids, |
|
title={Do Androids Laugh at Electric Sheep? Humor" Understanding" Benchmarks from The New Yorker Caption Contest}, |
|
author={Hessel, Jack and Marasovi{\'c}, Ana and Hwang, Jena D and Lee, Lillian and Da, Jeff and Zellers, Rowan and Mankoff, Robert and Choi, Yejin}, |
|
journal={arXiv preprint arXiv:2209.06293}, |
|
year={2022} |
|
} |
|
|
|
www.capcon.dev |
|
|
|
Our data contributions are: |
|
|
|
- The cartoon-level annotations; |
|
- The joke explanations; |
|
- and the framing of the tasks |
|
We release these data we contribute under CC-BY (see DATASET_LICENSE). |
|
|
|
If you find this data useful in your work, in addition to citing our contributions, please also cite the following, from which the cartoons/captions in our corpus are derived: |
|
|
|
@misc{newyorkernextmldataset, |
|
author={Jain, Lalit and Jamieson, Kevin and Mankoff, Robert and Nowak, Robert and Sievert, Scott}, |
|
title={The {N}ew {Y}orker Cartoon Caption Contest Dataset}, |
|
year={2020}, |
|
url={https://nextml.github.io/caption-contest-data/} |
|
} |
|
|
|
@inproceedings{radev-etal-2016-humor, |
|
title = "Humor in Collective Discourse: Unsupervised Funniness Detection in The {New Yorker} Cartoon Caption Contest", |
|
author = "Radev, Dragomir and |
|
Stent, Amanda and |
|
Tetreault, Joel and |
|
Pappu, Aasish and |
|
Iliakopoulou, Aikaterini and |
|
Chanfreau, Agustin and |
|
de Juan, Paloma and |
|
Vallmitjana, Jordi and |
|
Jaimes, Alejandro and |
|
Jha, Rahul and |
|
Mankoff, Robert", |
|
booktitle = "LREC", |
|
year = "2016", |
|
} |
|
|
|
@inproceedings{shahaf2015inside, |
|
title={Inside jokes: Identifying humorous cartoon captions}, |
|
author={Shahaf, Dafna and Horvitz, Eric and Mankoff, Robert}, |
|
booktitle={KDD}, |
|
year={2015}, |
|
} |
|
""" |
|
|
|
|
|
_CAPTION_CONTEST_DESCRIPTION = """\ |
|
There are 3 caption contest tasks, described in the paper. In the Matching multiple choice task, models must recognize a caption written about a cartoon (vs. options that were not). In the Quality Ranking task, models must evaluate the quality |
|
of that caption by scoring it more highly than a lower quality option from the same contest. In the Explanation Generation task, models must explain why the joke is funny. |
|
""" |
|
|
|
_MATCHING_DESCRIPTION = """\ |
|
You are given a cartoon and 5 captions. Only one of the captions was truly written about the cartoon. You must select it. |
|
""" |
|
|
|
_RANKING_DESCRIPTION = """\ |
|
You are given a cartoon and 2 captions. One of the captions was selected by crowd voting or New Yorker editors as high quality. You must select it. |
|
""" |
|
|
|
_EXPLANATION_DESCRIPTION = """\ |
|
You are given a cartoon and a caption that was written about it. You must autoregressively generate a joke explanation. |
|
""" |
|
|
|
|
|
_IMAGES_URL = "https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/all_contest_images.zip" |
|
|
|
|
|
def _get_configs_crossvals(): |
|
cross_val_configs = [] |
|
for split_idx in [1,2,3,4]: |
|
cur_split_configs = [ |
|
CaptionContestConfig( |
|
name='matching_{}'.format(split_idx), |
|
description=_MATCHING_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'image_location', |
|
'image_description', |
|
'image_uncanny_description', |
|
'entities', |
|
'questions', |
|
'caption_choices', |
|
'from_description', |
|
], |
|
label_classes=["A", "B", "C", "D", "E"], |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/matching_{}.zip'.format(split_idx), |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
|
|
CaptionContestConfig( |
|
name='matching_from_pixels_{}'.format(split_idx), |
|
description=_MATCHING_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'caption_choices', |
|
], |
|
label_classes=["A", "B", "C", "D", "E"], |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/matching_from_pixels_{}.zip'.format(split_idx), |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
|
|
CaptionContestConfig( |
|
name='ranking_{}'.format(split_idx), |
|
description=_RANKING_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'image_location', |
|
'image_description', |
|
'image_uncanny_description', |
|
'entities', |
|
'questions', |
|
'caption_choices', |
|
'from_description', |
|
'winner_source', |
|
], |
|
|
|
label_classes=["A", "B"], |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/ranking_{}.zip'.format(split_idx), |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
|
|
CaptionContestConfig( |
|
name='ranking_from_pixels_{}'.format(split_idx), |
|
description=_RANKING_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'caption_choices', |
|
'winner_source', |
|
], |
|
label_classes=["A", "B"], |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/ranking_from_pixels_{}.zip'.format(split_idx), |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
|
|
|
|
CaptionContestConfig( |
|
name='explanation_{}'.format(split_idx), |
|
description=_EXPLANATION_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'image_location', |
|
'image_description', |
|
'image_uncanny_description', |
|
'entities', |
|
'questions', |
|
'caption_choices', |
|
'from_description', |
|
], |
|
label_classes=None, |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/explanation_{}.zip'.format(split_idx), |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
|
|
CaptionContestConfig( |
|
name='explanation_from_pixels_{}'.format(split_idx), |
|
description=_EXPLANATION_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'caption_choices', |
|
], |
|
label_classes=None, |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/explanation_from_pixels_{}.zip'.format(split_idx), |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
] |
|
cross_val_configs.extend(cur_split_configs) |
|
return cross_val_configs |
|
|
|
|
|
class CaptionContestConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Caption Contest.""" |
|
|
|
def __init__(self, features, data_url, citation, url, label_classes=None, **kwargs): |
|
"""BuilderConfig for Caption Contest. |
|
Args: |
|
features: `list[string]`, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
data_url: `string`, url to download the zip file from. |
|
citation: `string`, citation for the data set. |
|
url: `string`, url for information about the data set. |
|
label_classes: `list[string]`, the list of classes for the label if the |
|
label is present as a string. If not provided, there is no fixed label set. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
super(CaptionContestConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.features = features |
|
self.data_url = data_url |
|
self.citation = citation |
|
self.url = url |
|
self.label_classes = label_classes |
|
|
|
|
|
class CaptionContest(datasets.GeneratorBasedBuilder): |
|
"""The CaptionContest benchmark.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
CaptionContestConfig( |
|
name='matching', |
|
description=_MATCHING_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'image_location', |
|
'image_description', |
|
'image_uncanny_description', |
|
'entities', |
|
'questions', |
|
'caption_choices', |
|
'from_description', |
|
], |
|
label_classes=["A", "B", "C", "D", "E"], |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/matching.zip', |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
|
|
CaptionContestConfig( |
|
name='matching_from_pixels', |
|
description=_MATCHING_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'caption_choices', |
|
], |
|
label_classes=["A", "B", "C", "D", "E"], |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/matching_from_pixels.zip', |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
|
|
CaptionContestConfig( |
|
name='ranking', |
|
description=_RANKING_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'image_location', |
|
'image_description', |
|
'image_uncanny_description', |
|
'entities', |
|
'questions', |
|
'caption_choices', |
|
'from_description', |
|
'winner_source', |
|
], |
|
label_classes=["A", "B"], |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/ranking.zip', |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
|
|
CaptionContestConfig( |
|
name='ranking_from_pixels', |
|
description=_RANKING_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'caption_choices', |
|
'winner_source', |
|
], |
|
label_classes=["A", "B"], |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/ranking_from_pixels.zip', |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
|
|
|
|
CaptionContestConfig( |
|
name='explanation', |
|
description=_EXPLANATION_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'image_location', |
|
'image_description', |
|
'image_uncanny_description', |
|
'entities', |
|
'questions', |
|
'caption_choices', |
|
'from_description', |
|
], |
|
label_classes=None, |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/explanation.zip', |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
|
|
CaptionContestConfig( |
|
name='explanation_from_pixels', |
|
description=_EXPLANATION_DESCRIPTION, |
|
features=[ |
|
'image', |
|
'contest_number', |
|
'caption_choices', |
|
], |
|
label_classes=None, |
|
data_url='https://storage.googleapis.com/ai2-jack-public/caption_contest_data_public/huggingface_hub/v1.0/explanation_from_pixels.zip', |
|
url='www.capcon.dev', |
|
citation=_CAPTION_CONTEST_TASKS_CITATION, |
|
), |
|
] + _get_configs_crossvals() |
|
|
|
|
|
def _info(self): |
|
features = {feature: datasets.Value("string") for feature in self.config.features} |
|
|
|
features['contest_number'] = datasets.Value("int32") |
|
if 'explanation' not in self.config.name: |
|
features['caption_choices'] = datasets.features.Sequence(datasets.Value("string")) |
|
|
|
if 'entities' in features: |
|
features['entities'] = datasets.features.Sequence(datasets.Value("string")) |
|
|
|
if 'questions' in features: |
|
features['questions'] = datasets.features.Sequence(datasets.Value("string")) |
|
|
|
if 'image' in features: |
|
features['image'] = datasets.Image() |
|
|
|
features['label'] = datasets.Value("string") |
|
features['n_tokens_label'] = datasets.Value("int32") |
|
features['instance_id'] = datasets.Value("string") |
|
|
|
return datasets.DatasetInfo( |
|
description=_CAPTION_CONTEST_DESCRIPTION + self.config.description, |
|
features=datasets.Features(features), |
|
homepage=self.config.url, |
|
citation=self.config.citation |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(self.config.data_url) or "" |
|
self.images_dir = dl_manager.download_and_extract(_IMAGES_URL) |
|
task_name = _get_task_name_from_data_url(self.config.data_url) |
|
dl_dir = os.path.join(dl_dir, task_name) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "train.jsonl"), |
|
"split": datasets.Split.TRAIN, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "val.jsonl"), |
|
"split": datasets.Split.VALIDATION, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "test.jsonl"), |
|
"split": datasets.Split.TEST, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file, split): |
|
with open(data_file, encoding="utf-8") as f: |
|
for line in f: |
|
row = json.loads(line) |
|
with open(self.images_dir + "/all_contest_images/{}.jpeg".format(row['contest_number']), "rb") as image: |
|
row['image'] = {"path": self.images_dir + "/all_contest_images/{}.jpeg".format(row['contest_number']), |
|
"bytes": image.read()} |
|
yield row['instance_id'], row |
|
|
|
def _get_task_name_from_data_url(data_url): |
|
return data_url.split("/")[-1].split(".")[0] |
|
|