Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,840 Bytes
355e19b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""JFLEG dataset."""

from __future__ import absolute_import, division, print_function

import datasets


_CITATION = """\
@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,
  author    = {Napoles, Courtney
               and  Sakaguchi, Keisuke
               and  Tetreault, Joel},
  title     = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},
  booktitle = {Proceedings of the 15th Conference of the European Chapter of the
               Association for Computational Linguistics: Volume 2, Short Papers},
  month     = {April},
  year      = {2017},
  address   = {Valencia, Spain},
  publisher = {Association for Computational Linguistics},
  pages     = {229--234},
  url       = {http://www.aclweb.org/anthology/E17-2037}
}
@InProceedings{heilman-EtAl:2014:P14-2,
  author    = {Heilman, Michael
               and  Cahill, Aoife
               and  Madnani, Nitin
               and  Lopez, Melissa
               and  Mulholland, Matthew
               and  Tetreault, Joel},
  title     = {Predicting Grammaticality on an Ordinal Scale},
  booktitle = {Proceedings of the 52nd Annual Meeting of the
               Association for Computational Linguistics (Volume 2: Short Papers)},
  month     = {June},
  year      = {2014},
  address   = {Baltimore, Maryland},
  publisher = {Association for Computational Linguistics},
  pages     = {174--180},
  url       = {http://www.aclweb.org/anthology/P14-2029}
}
"""

_DESCRIPTION = """\
JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus.
It is a gold standard benchmark for developing and evaluating GEC systems with respect to
fluency (extent to which a text is native-sounding) as well as grammaticality.

For each source document, there are four human-written corrections (ref0 to ref3).
"""

_HOMEPAGE = "https://github.com/keisks/jfleg"

_LICENSE = "CC BY-NC-SA 4.0"

_URLs = {
    "dev": {
        "src": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.src",
        "ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref0",
        "ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref1",
        "ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref2",
        "ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref3",
    },
    "test": {
        "src": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.src",
        "ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref0",
        "ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref1",
        "ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref2",
        "ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref3",
    },
}


class Jfleg(datasets.GeneratorBasedBuilder):
    """JFLEG (JHU FLuency-Extended GUG) grammatical error correction dataset."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {"sentence": datasets.Value("string"), "corrections": datasets.Sequence(datasets.Value("string"))}
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        downloaded_dev = dl_manager.download_and_extract(_URLs["dev"])
        downloaded_test = dl_manager.download_and_extract(_URLs["test"])

        return [
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": downloaded_dev,
                    "split": "dev",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": downloaded_test, "split": "test"},
            ),
        ]

    def _generate_examples(self, filepath, split):
        """ Yields examples. """

        source_file = filepath["src"]
        with open(source_file, encoding="utf-8") as f:
            source_sentences = f.read().split("\n")
            num_source = len(source_sentences)

        corrections = []
        for n in range(0, 4):
            correction_file = filepath["ref{n}".format(n=n)]
            with open(correction_file, encoding="utf-8") as f:
                correction_sentences = f.read().split("\n")
                num_correction = len(correction_sentences)

                assert len(correction_sentences) == len(
                    source_sentences
                ), "Sizes do not match: {ns} vs {nr} for {sf} vs {cf}.".format(
                    ns=num_source, nr=num_correction, sf=source_file, cf=correction_file
                )
                corrections.append(correction_sentences)

        corrected_sentences = list(zip(*corrections))
        for id_, source_sentence in enumerate(source_sentences):
            yield id_, {"sentence": source_sentence, "corrections": corrected_sentences[id_]}