File size: 5,840 Bytes
355e19b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""JFLEG dataset."""
from __future__ import absolute_import, division, print_function
import datasets
_CITATION = """\
@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,
author = {Napoles, Courtney
and Sakaguchi, Keisuke
and Tetreault, Joel},
title = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},
booktitle = {Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers},
month = {April},
year = {2017},
address = {Valencia, Spain},
publisher = {Association for Computational Linguistics},
pages = {229--234},
url = {http://www.aclweb.org/anthology/E17-2037}
}
@InProceedings{heilman-EtAl:2014:P14-2,
author = {Heilman, Michael
and Cahill, Aoife
and Madnani, Nitin
and Lopez, Melissa
and Mulholland, Matthew
and Tetreault, Joel},
title = {Predicting Grammaticality on an Ordinal Scale},
booktitle = {Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers)},
month = {June},
year = {2014},
address = {Baltimore, Maryland},
publisher = {Association for Computational Linguistics},
pages = {174--180},
url = {http://www.aclweb.org/anthology/P14-2029}
}
"""
_DESCRIPTION = """\
JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus.
It is a gold standard benchmark for developing and evaluating GEC systems with respect to
fluency (extent to which a text is native-sounding) as well as grammaticality.
For each source document, there are four human-written corrections (ref0 to ref3).
"""
_HOMEPAGE = "https://github.com/keisks/jfleg"
_LICENSE = "CC BY-NC-SA 4.0"
_URLs = {
"dev": {
"src": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.src",
"ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref0",
"ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref1",
"ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref2",
"ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/dev/dev.ref3",
},
"test": {
"src": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.src",
"ref0": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref0",
"ref1": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref1",
"ref2": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref2",
"ref3": "https://raw.githubusercontent.com/keisks/jfleg/master/test/test.ref3",
},
}
class Jfleg(datasets.GeneratorBasedBuilder):
"""JFLEG (JHU FLuency-Extended GUG) grammatical error correction dataset."""
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{"sentence": datasets.Value("string"), "corrections": datasets.Sequence(datasets.Value("string"))}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_dev = dl_manager.download_and_extract(_URLs["dev"])
downloaded_test = dl_manager.download_and_extract(_URLs["test"])
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_dev,
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": downloaded_test, "split": "test"},
),
]
def _generate_examples(self, filepath, split):
""" Yields examples. """
source_file = filepath["src"]
with open(source_file, encoding="utf-8") as f:
source_sentences = f.read().split("\n")
num_source = len(source_sentences)
corrections = []
for n in range(0, 4):
correction_file = filepath["ref{n}".format(n=n)]
with open(correction_file, encoding="utf-8") as f:
correction_sentences = f.read().split("\n")
num_correction = len(correction_sentences)
assert len(correction_sentences) == len(
source_sentences
), "Sizes do not match: {ns} vs {nr} for {sf} vs {cf}.".format(
ns=num_source, nr=num_correction, sf=source_file, cf=correction_file
)
corrections.append(correction_sentences)
corrected_sentences = list(zip(*corrections))
for id_, source_sentence in enumerate(source_sentences):
yield id_, {"sentence": source_sentence, "corrections": corrected_sentences[id_]}
|