File size: 12,458 Bytes
1d7245f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28974f4
 
 
 
 
 
1d7245f
 
 
 
6297930
 
 
1d7245f
 
 
 
 
 
36d87d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28974f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7245f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee751f
 
 
28974f4
1ee751f
 
 
28974f4
1ee751f
 
 
28974f4
1ee751f
28974f4
1d7245f
 
 
 
 
 
 
 
 
 
28974f4
1d7245f
28974f4
 
1d7245f
 
 
 
 
 
 
28974f4
 
 
1d7245f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28974f4
1d7245f
 
 
 
 
 
 
 
 
 
28974f4
1d7245f
 
28974f4
1d7245f
36d87d5
 
 
 
 
 
 
 
 
 
 
 
1d7245f
28974f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7245f
 
 
 
28974f4
1d7245f
 
 
 
 
36d87d5
 
1d7245f
 
28974f4
1d7245f
 
 
 
28974f4
 
 
1d7245f
 
6297930
1d7245f
28974f4
bc9f870
 
36d87d5
 
 
28974f4
 
 
 
 
1d7245f
 
 
1ee751f
28974f4
 
1d7245f
28974f4
1d7245f
 
1ee751f
1d7245f
28974f4
 
 
 
 
 
 
 
 
1d7245f
28974f4
1d7245f
 
28974f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7245f
 
 
 
 
28974f4
 
 
 
 
 
 
 
1d7245f
 
 
 
 
28974f4
 
 
 
 
 
1d7245f
28974f4
1d7245f
 
28974f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#!/usr/bin/env python

# Split a protein-ligand complex into protein and ligands and assign ligand bond orders using SMILES strings from Ligand Export
# Code requires Python 3.6

import sys
from prody import *
import pandas as pd
from rdkit import Chem
from rdkit.Chem import AllChem
from io import StringIO
import requests

from mpi4py import MPI
from mpi4py.futures import MPICommExecutor
from mpi4py.futures import MPIPoolExecutor

import re
from functools import partial
import gzip
from rdkit.Chem.Descriptors import ExactMolWt
import numpy as np

import os
import random
import traceback

from openfold import data_transforms, protein
from openfold.residue_constants import aatype_to_str_sequence
import torch

# minimum molecular weight to consider sth a ligand
mol_wt_cutoff = 100

# minimum number of atoms
min_atoms = 3

# all punctuation
punctuation_regex  = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""

# tokenization regex (Schwaller)
molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""

# filter out these common additives which occur in more than 75 complexes in the PDB
ubiquitous_ligands = ['PEG', 'ADP', 'FAD', 'NAD', 'ATP', 'MPD', 'NAP', 'GDP', 'MES',
       'GTP', 'FMN', 'HEC', 'TRS', 'CIT', 'PGE', 'ANP', 'SAH', 'NDP',
       'PG4', 'EPE', 'AMP', 'COA', 'MLI', 'FES', 'GNP', 'MRD', 'GSH',
       'FLC', 'AGS', 'NAI', 'SAM', 'PCW', '1PE', 'TLA', 'BOG', 'CYC',
       'UDP', 'PX4', 'NAG', 'IMP', 'POP', 'UMP', 'PLM', 'HEZ', 'TPP',
       'ACP', 'LDA', 'ACO', 'CLR', 'BGC', 'P6G', 'LMT', 'OGA', 'DTT',
       'POV', 'FBP', 'AKG', 'MLA', 'ADN', 'NHE', '7Q9', 'CMP', 'BTB',
       'PLP', 'CAC', 'SIN', 'C2E', '2AN', 'OCT', '17F', 'TAR', 'BTN',
       'XYP', 'MAN', '5GP', 'GAL', 'GLC', 'DTP', 'DGT', 'PEB', 'THP',
       'BEZ', 'CTP', 'GSP', 'HED', 'ADE', 'TYD', 'TTP', 'BNG', 'IHP',
       'FDA', 'PEP', 'ALF', 'APR', 'MTX', 'MLT', 'LU8', 'UTP', 'APC',
       'BLA', 'C8E', 'D10', 'CHT', 'BO2', '3BV', 'ORO', 'MPO', 'Y01',
       'OLC', 'B3P', 'G6P', 'PMP', 'D12', 'NDG', 'A3P', '78M', 'F6P',
       'U5P', 'PRP', 'UPG', 'THM', 'SFG', 'MYR', 'FEO', 'PG0', 'CXS',
       'AR6', 'CHD', 'WO4', 'C5P', 'UFP', 'GCP', 'HDD', 'SRT', 'STU',
       'CDP', 'TCL', '04C', 'MYA', 'URA', 'PLG', 'MTA', 'BMP', 'SAL',
       'TA1', 'UD1', 'OLA', 'BCN', 'LMR', 'BMA', 'OAA', 'TAM', 'MBO',
       'MMA', 'SPD', 'MTE', 'AP5', 'TMP', 'PGA', 'GLA', '3PG', 'FUL',
       'PQQ', '9TY', 'DUR', 'PPV', 'SPM', 'SIA', 'DUP', 'GTX', '1PG',
       'GUN', 'ETF', 'FDP', 'MFU', 'G2P', 'PC', 'DST', 'INI']

def get_protein_sequence_and_coords(receptor, pdb_str):
    chains = [chain.getChid() for chain in receptor.getHierView()]

    aatype = []
    atom_positions = []
    atom_mask = []
    for chain in chains:
        p = protein.from_pdb_string(pdb_str, chain)
        aatype.append(p.aatype)
        atom_positions.append(p.atom_positions)
        atom_mask.append(p.atom_mask)

    # concatenate chains
    aatype = np.concatenate(aatype)
    atom_positions = np.concatenate(atom_positions)
    atom_mask = np.concatenate(atom_mask)

    # determine torsion angles
    features = {'aatype': torch.tensor(aatype),
                'all_atom_positions': torch.tensor(atom_positions),
                'all_atom_mask': torch.tensor(atom_mask)}
    features = data_transforms.atom37_to_torsion_angles()(features)
    features = data_transforms.atom37_to_frames(features)
    features = data_transforms.make_atom14_masks(features)
    features = data_transforms.make_atom14_positions(features)
    features = {k: v.numpy() for k, v in features.items() if isinstance(v, torch.Tensor)}

    seq = aatype_to_str_sequence(aatype)

    return seq, features

def tokenize_ligand(mol):
    # convert to SMILES and map atoms
    smi = Chem.MolToSmiles(mol)

    # position of atoms in SMILES (not counting punctuation)
    atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))]

    # tokenize the SMILES
    tokens = list(filter(None, re.split(molecule_regex, smi)))

    # remove punctuation
    masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens]

    k = 0
    token_pos = []
    for i,token in enumerate(masked_tokens):
        if token != '':
            token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k])))
            k += 1
        else:
            token_pos.append((np.nan, np.nan, np.nan))

    k = 0
    conf_2d = AllChem.Compute2DCoords(mol)
    token_pos_2d = []
    atom_idx = []
    for i,token in enumerate(masked_tokens):
        if token != '':
            token_pos_2d.append(tuple(mol.GetConformer(conf_2d).GetAtomPosition(atom_order[k])))
            atom_idx.append(atom_order[k])
            k += 1
        else:
            token_pos_2d.append((0.,0.,0.))
            atom_idx.append(None)

    return smi, token_pos, token_pos_2d, atom_idx

def read_ligand_expo():
    """
    Read Ligand Expo data, try to find a file called
    Components-smiles-stereo-oe.smi in the current directory.
    If you can't find the file, grab it from the RCSB
    :return: Ligand Expo as a dictionary with ligand id as the key
    """
    file_name = "Components-smiles-stereo-oe.smi"
    try:
        df = pd.read_csv(file_name, sep=r"[\t]+",
                         header=None,
                         names=["SMILES", "ID", "Name"],
                         engine='python')
    except FileNotFoundError:
        url = f"http://ligand-expo.rcsb.org/dictionaries/{file_name}"
        print(url)
        r = requests.get(url, allow_redirects=True)
        open('Components-smiles-stereo-oe.smi', 'wb').write(r.content)
        df = pd.read_csv(file_name, sep="\t",
                         header=None,
                         names=["SMILES", "ID", "Name"],
                         na_filter=False)
    return df


def get_pdb_components(pdb_id):
    """
    Split a protein-ligand pdb into protein and ligand components
    :param pdb_id:
    :return:
    """
    with gzip.open(pdb_id,'rt') as f:
        pdb = parsePDBStream(f)

    protein = pdb.select('protein')
    ligand = pdb.select('not protein and not water')
    return protein, ligand


def process_ligand(ligand, res_name, df_expo):
    """
    Add bond orders to a pdb ligand
    1. Select the ligand component with name "res_name"
    2. Get the corresponding SMILES from the Ligand Expo dictionary
    3. Create a template molecule from the SMILES in step 2
    4. Write the PDB file to a stream
    5. Read the stream into an RDKit molecule
    6. Assign the bond orders from the template from step 3
    :param ligand: ligand as generated by prody
    :param res_name: residue name of ligand to extract
    :param df_expo: dictionary with LigandExpo
    :return: molecule with bond orders assigned
    """
    sub_smiles = df_expo[df_expo['ID'].values == res_name]['SMILES'].values[0]
    template = AllChem.MolFromSmiles(sub_smiles)

    allres = ligand.select(f"resname {res_name}")
    res = np.unique(allres.getResindices())
    mols = []
    for i in res:
        sub_mol = ligand.select(f"resname {res_name} and resindex {i}")
        output = StringIO()
        writePDBStream(output, sub_mol)
        pdb_string = output.getvalue()
        rd_mol = AllChem.MolFromPDBBlock(pdb_string)
        mols.append(AllChem.AssignBondOrdersFromTemplate(template, rd_mol))
    return mols, template

def rot_from_two_vecs(e0_unnormalized, e1_unnormalized):
    """Create rotation matrices from unnormalized vectors for the x and y-axes.
    This creates a rotation matrix from two vectors using Gram-Schmidt
    orthogonalization.
    Args:
    e0_unnormalized: vectors lying along x-axis of resulting rotation
    e1_unnormalized: vectors lying in xy-plane of resulting rotation
    Returns:
    Rotations resulting from Gram-Schmidt procedure.
    """
    # Normalize the unit vector for the x-axis, e0.
    e0 = e0_unnormalized / np.linalg.norm(e0_unnormalized)

    # make e1 perpendicular to e0.
    c = np.dot(e1_unnormalized, e0)
    e1 = e1_unnormalized - c * e0
    e1 = e1 / np.linalg.norm(e1)

    # Compute e2 as cross product of e0 and e1.
    e2 = np.cross(e0, e1)

    # local to space frame
    return np.stack([e0,e1,e2]).T

def process_entry(df, pdb_fn):
    try:
        """
        Slit pdb into protein and ligands,
        parse protein sequence and ligand tokens
        :param df: ligand expo data
        :param pdb_fn: pdb entry file name
        :return:
        """
        protein, ligand = get_pdb_components(pdb_fn)

        pdb_name = os.path.basename(pdb_fn).split('.')[-3][3:]

        ligand_mols = []
        ligand_names = []
        ligand_bonds = []
        if ligand is not None:
            # filter ligands by molecular weight
            res_name_list = list(set(ligand.getResnames()))
            for res in res_name_list:
                if res in ubiquitous_ligands:
                    continue
                mols, template = process_ligand(ligand, res, df)

                mol_wt = ExactMolWt(template)
                natoms = template.GetNumAtoms()

                if mol_wt >= mol_wt_cutoff and natoms >= min_atoms:
                    # only use first copy of ligand
                    mols = mols[:1]
                    ligand_mols += mols
                    ligand_names += [res]*len(mols)

                    bonds = []
                    for b in template.GetBonds():
                        bonds.append((b.GetBeginAtomIdx(), b.GetEndAtomIdx()))
                    ligand_bonds.append(bonds)


        ligand_smiles = []
        ligand_xyz = []
        ligand_xyz_2d = []
        ligand_token_bonds = []
        for mol, name, bonds in zip(ligand_mols, ligand_names, ligand_bonds):
            print('Processing {} and {}'.format(pdb_name, name))
            smi, xyz, xyz_2d, atom_idx = tokenize_ligand(mol)
            ligand_smiles.append(smi)
            ligand_xyz.append(xyz)
            ligand_xyz_2d.append(xyz_2d)

            ligand_token_bonds.append([ (atom_idx.index(b[0]), atom_idx.index(b[1])) for b in bonds ])

        pdb_str = StringIO()
        writePDBStream(pdb_str, protein)

        seq, features = get_protein_sequence_and_coords(protein, pdb_str.getvalue())
        features = { 'rigidgroups_gt_frames': features['rigidgroups_gt_frames'],
                    'torsion_angles_sin_cos': features['torsion_angles_sin_cos']}
        return pdb_name, seq, features, ligand_names, ligand_smiles, ligand_xyz, ligand_xyz_2d, ligand_token_bonds
    except Exception as e:
        print(traceback.format_exc())
        print(repr(e))

def write_result(fn, data):
    # expand sequences and ligands
    pdb_id = [r[0] for r in data if r is not None for ligand in r[3]]
    seq = [r[1] for r in data if r is not None for ligand in r[3]]
    receptor_features = [r[2] for r in data if r is not None for ligand in r[3]]
    lig_id = [l for r in data if r is not None for l in r[3]]
    lig_smiles = [s for r in data if r is not None for s in r[4]]
    lig_xyz = [xyz for r in data if r is not None for xyz in r[5]]
    lig_xyz_2d = [xyz for r in data if r is not None for xyz in r[6]]
    lig_bonds = [b for r in data if r is not None for b in r[7]]

    import pandas as pd
    df = pd.DataFrame({
        'pdb_id': pdb_id,
        'lig_id': lig_id,
        'seq': seq,
        'smiles': lig_smiles,
        'receptor_features': receptor_features,
        'ligand_xyz': lig_xyz,
        'ligand_xyz_2d': lig_xyz_2d,
        'ligand_bonds': lig_bonds})
    df.to_pickle(fn)

if __name__ == '__main__':
    import glob

    filenames = glob.glob('pdb/*/*.gz')
    filenames = sorted(filenames)

    random.seed(42)
    random.shuffle(filenames)

    split_idx = int(0.9*len(filenames))
    train = filenames[:split_idx]
    test = filenames[split_idx:]

    comm = MPI.COMM_WORLD
    with MPICommExecutor(comm, root=0) as executor:
#    with MPIPoolExecutor() as executor:
        if executor is not None:
            # read ligand table
            df = read_ligand_expo()

            result = executor.map(partial(process_entry, df), train, chunksize=128)
            result = list(result)

            write_result('data/pdb_train.p', result)

            result = executor.map(partial(process_entry, df), test, chunksize=128)
            result = list(result)

            write_result('data/pdb_test.p', result)