File size: 15,106 Bytes
28974f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Protein data type."""
import dataclasses
import io
from typing import Any, Sequence, Mapping, Optional
import re
import string

from . import residue_constants
from Bio.PDB import PDBParser
import numpy as np


FeatureDict = Mapping[str, np.ndarray]
ModelOutput = Mapping[str, Any]  # Is a nested dict.
PICO_TO_ANGSTROM = 0.01

@dataclasses.dataclass(frozen=True)
class Protein:
    """Protein structure representation."""

    # Cartesian coordinates of atoms in angstroms. The atom types correspond to
    # residue_constants.atom_types, i.e. the first three are N, CA, CB.
    atom_positions: np.ndarray  # [num_res, num_atom_type, 3]

    # Amino-acid type for each residue represented as an integer between 0 and
    # 20, where 20 is 'X'.
    aatype: np.ndarray  # [num_res]

    # Binary float mask to indicate presence of a particular atom. 1.0 if an atom
    # is present and 0.0 if not. This should be used for loss masking.
    atom_mask: np.ndarray  # [num_res, num_atom_type]

    # Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
    residue_index: np.ndarray  # [num_res]

    # B-factors, or temperature factors, of each residue (in sq. angstroms units),
    # representing the displacement of the residue from its ground truth mean
    # value.
    b_factors: np.ndarray  # [num_res, num_atom_type]

    # Chain indices for multi-chain predictions
    chain_index: Optional[np.ndarray] = None

    # Optional remark about the protein. Included as a comment in output PDB 
    # files
    remark: Optional[str] = None

    # Templates used to generate this protein (prediction-only)
    parents: Optional[Sequence[str]] = None

    # Chain corresponding to each parent
    parents_chain_index: Optional[Sequence[int]] = None


def from_pdb_string(pdb_str: str, chain_id: Optional[str] = None) -> Protein:
    """Takes a PDB string and constructs a Protein object.
    WARNING: All non-standard residue types will be converted into UNK. All
      non-standard atoms will be ignored.
    Args:
      pdb_str: The contents of the pdb file
      chain_id: If None, then the pdb file must contain a single chain (which
        will be parsed). If chain_id is specified (e.g. A), then only that chain
        is parsed.
    Returns:
      A new `Protein` parsed from the pdb contents.
    """
    pdb_fh = io.StringIO(pdb_str)
    parser = PDBParser(QUIET=True)
    structure = parser.get_structure("none", pdb_fh)
    models = list(structure.get_models())
    if len(models) != 1:
        raise ValueError(
            f"Only single model PDBs are supported. Found {len(models)} models."
        )
    model = models[0]

    atom_positions = []
    aatype = []
    atom_mask = []
    residue_index = []
    chain_ids = []
    b_factors = []

    for chain in model:
        if(chain_id is not None and chain.id != chain_id):
            continue
        for res in chain:
            if res.id[2] != " ":
                raise ValueError(
                    f"PDB contains an insertion code at chain {chain.id} and residue "
                    f"index {res.id[1]}. These are not supported."
                )
            res_shortname = residue_constants.restype_3to1.get(res.resname, "X")
            restype_idx = residue_constants.restype_order.get(
                res_shortname, residue_constants.restype_num
            )
            pos = np.zeros((residue_constants.atom_type_num, 3))
            mask = np.zeros((residue_constants.atom_type_num,))
            res_b_factors = np.zeros((residue_constants.atom_type_num,))
            for atom in res:
                if atom.name not in residue_constants.atom_types:
                    continue
                pos[residue_constants.atom_order[atom.name]] = atom.coord
                mask[residue_constants.atom_order[atom.name]] = 1.0
                res_b_factors[
                    residue_constants.atom_order[atom.name]
                ] = atom.bfactor
            if np.sum(mask) < 0.5:
                # If no known atom positions are reported for the residue then skip it.
                continue
            aatype.append(restype_idx)
            atom_positions.append(pos)
            atom_mask.append(mask)
            residue_index.append(res.id[1])
            chain_ids.append(chain.id)
            b_factors.append(res_b_factors)

    parents = None
    parents_chain_index = None
    if("PARENT" in pdb_str):
        parents = []
        parents_chain_index = []
        chain_id = 0
        for l in pdb_str.split("\n"):
            if("PARENT" in l):
                if(not "N/A" in l):
                    parent_names = l.split()[1:]
                    parents.extend(parent_names)
                    parents_chain_index.extend([
                        chain_id for _ in parent_names
                    ])
                chain_id += 1

    unique_chain_ids = np.unique(chain_ids)
    chain_id_mapping = {cid: n for n, cid in enumerate(string.ascii_uppercase)}
    chain_index = np.array([chain_id_mapping[cid] for cid in chain_ids])

    return Protein(
        atom_positions=np.array(atom_positions),
        atom_mask=np.array(atom_mask),
        aatype=np.array(aatype),
        residue_index=np.array(residue_index),
        chain_index=chain_index,
        b_factors=np.array(b_factors),
        parents=parents,
        parents_chain_index=parents_chain_index,
    )


def from_proteinnet_string(proteinnet_str: str) -> Protein:
    tag_re = r'(\[[A-Z]+\]\n)'
    tags = [
        tag.strip() for tag in re.split(tag_re, proteinnet_str) if len(tag) > 0
    ]
    groups = zip(tags[0::2], [l.split('\n') for l in tags[1::2]])
   
    atoms = ['N', 'CA', 'C']
    aatype = None
    atom_positions = None
    atom_mask = None
    for g in groups:
        if("[PRIMARY]" == g[0]):
            seq = g[1][0].strip()
            for i in range(len(seq)):
                if(seq[i] not in residue_constants.restypes):
                    seq[i] = 'X'
            aatype = np.array([
                residue_constants.restype_order.get(
                    res_symbol, residue_constants.restype_num
                ) for res_symbol in seq
            ])
        elif("[TERTIARY]" == g[0]):
            tertiary = []
            for axis in range(3):
                tertiary.append(list(map(float, g[1][axis].split())))
            tertiary_np = np.array(tertiary)
            atom_positions = np.zeros(
                (len(tertiary[0])//3, residue_constants.atom_type_num, 3)
            ).astype(np.float32)
            for i, atom in enumerate(atoms):
                atom_positions[:, residue_constants.atom_order[atom], :] = (
                    np.transpose(tertiary_np[:, i::3])
                )
            atom_positions *= PICO_TO_ANGSTROM
        elif("[MASK]" == g[0]):
            mask = np.array(list(map({'-': 0, '+': 1}.get, g[1][0].strip())))
            atom_mask = np.zeros(
                (len(mask), residue_constants.atom_type_num,)
            ).astype(np.float32)
            for i, atom in enumerate(atoms):
                atom_mask[:, residue_constants.atom_order[atom]] = 1
            atom_mask *= mask[..., None]

    return Protein(
        atom_positions=atom_positions,
        atom_mask=atom_mask,
        aatype=aatype,
        residue_index=np.arange(len(aatype)),
        b_factors=None,
    )


def get_pdb_headers(prot: Protein, chain_id: int = 0) -> Sequence[str]:
    pdb_headers = []

    remark = prot.remark
    if(remark is not None):
        pdb_headers.append(f"REMARK {remark}")

    parents = prot.parents
    parents_chain_index = prot.parents_chain_index
    if(parents_chain_index is not None):
        parents = [
            p for i, p in zip(parents_chain_index, parents) if i == chain_id
        ]

    if(parents is None or len(parents) == 0):
        parents = ["N/A"]

    pdb_headers.append(f"PARENT {' '.join(parents)}")

    return pdb_headers


def add_pdb_headers(prot: Protein, pdb_str: str) -> str:
    """ Add pdb headers to an existing PDB string. Useful during multi-chain
        recycling
    """
    out_pdb_lines = []
    lines = pdb_str.split('\n')
    
    remark = prot.remark
    if(remark is not None):
        out_pdb_lines.append(f"REMARK {remark}")

    parents_per_chain = None
    if(prot.parents is not None and len(prot.parents) > 0):
        parents_per_chain = []
        if(prot.parents_chain_index is not None):
            cur_chain = prot.parents_chain_index[0]
            parent_dict = {}
            for p, i in zip(prot.parents, prot.parents_chain_index):
                parent_dict.setdefault(str(i), [])
                parent_dict[str(i)].append(p)

            max_idx = max([int(chain_idx) for chain_idx in parent_dict])
            for i in range(max_idx + 1):
                chain_parents = parent_dict.get(str(i), ["N/A"])
                parents_per_chain.append(chain_parents)
        else:
            parents_per_chain.append(prot.parents)
    else:
        parents_per_chain = [["N/A"]]

    make_parent_line = lambda p: f"PARENT {' '.join(p)}"

    out_pdb_lines.append(make_parent_line(parents_per_chain[0]))

    chain_counter = 0
    for i, l in enumerate(lines):
        if("PARENT" not in l and "REMARK" not in l):
            out_pdb_lines.append(l)
        if("TER" in l and not "END" in lines[i + 1]):
            chain_counter += 1
            if(not chain_counter >= len(parents_per_chain)):
                chain_parents = parents_per_chain[chain_counter]
            else:
                chain_parents = ["N/A"]

            out_pdb_lines.append(make_parent_line(chain_parents))

    return '\n'.join(out_pdb_lines)


def to_pdb(prot: Protein) -> str:
    """Converts a `Protein` instance to a PDB string.
    Args:
      prot: The protein to convert to PDB.
    Returns:
      PDB string.
    """
    restypes = residue_constants.restypes + ["X"]
    res_1to3 = lambda r: residue_constants.restype_1to3.get(restypes[r], "UNK")
    atom_types = residue_constants.atom_types

    pdb_lines = []

    atom_mask = prot.atom_mask
    aatype = prot.aatype
    atom_positions = prot.atom_positions
    residue_index = prot.residue_index.astype(np.int32)
    b_factors = prot.b_factors
    chain_index = prot.chain_index

    if np.any(aatype > residue_constants.restype_num):
        raise ValueError("Invalid aatypes.")

    headers = get_pdb_headers(prot)
    if(len(headers) > 0):
        pdb_lines.extend(headers)

    n = aatype.shape[0]
    atom_index = 1
    prev_chain_index = 0
    chain_tags = string.ascii_uppercase
    # Add all atom sites.
    for i in range(n):
        res_name_3 = res_1to3(aatype[i])
        for atom_name, pos, mask, b_factor in zip(
            atom_types, atom_positions[i], atom_mask[i], b_factors[i]
        ):
            if mask < 0.5:
                continue

            record_type = "ATOM"
            name = atom_name if len(atom_name) == 4 else f" {atom_name}"
            alt_loc = ""
            insertion_code = ""
            occupancy = 1.00
            element = atom_name[
                0
            ]  # Protein supports only C, N, O, S, this works.
            charge = ""
    
            chain_tag = "A"
            if(chain_index is not None):
                chain_tag = chain_tags[chain_index[i]]

            # PDB is a columnar format, every space matters here!
            atom_line = (
                f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
                f"{res_name_3:>3} {chain_tag:>1}"
                f"{residue_index[i]:>4}{insertion_code:>1}   "
                f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
                f"{occupancy:>6.2f}{b_factor:>6.2f}          "
                f"{element:>2}{charge:>2}"
            )
            pdb_lines.append(atom_line)
            atom_index += 1

        should_terminate = (i == n - 1)
        if(chain_index is not None):
            if(i != n - 1 and chain_index[i + 1] != prev_chain_index):
                should_terminate = True
                prev_chain_index = chain_index[i + 1]

        if(should_terminate):
            # Close the chain.
            chain_end = "TER"
            chain_termination_line = (
                f"{chain_end:<6}{atom_index:>5}      "
                f"{res_1to3(aatype[i]):>3} "
                f"{chain_tag:>1}{residue_index[i]:>4}"
            )
            pdb_lines.append(chain_termination_line)
            atom_index += 1

            if(i != n - 1):
                # "prev" is a misnomer here. This happens at the beginning of
                # each new chain.
                pdb_lines.extend(get_pdb_headers(prot, prev_chain_index))

    pdb_lines.append("END")
    pdb_lines.append("")
    return "\n".join(pdb_lines)


def ideal_atom_mask(prot: Protein) -> np.ndarray:
    """Computes an ideal atom mask.
    `Protein.atom_mask` typically is defined according to the atoms that are
    reported in the PDB. This function computes a mask according to heavy atoms
    that should be present in the given sequence of amino acids.
    Args:
      prot: `Protein` whose fields are `numpy.ndarray` objects.
    Returns:
      An ideal atom mask.
    """
    return residue_constants.STANDARD_ATOM_MASK[prot.aatype]


def from_prediction(
    features: FeatureDict,
    result: ModelOutput,
    b_factors: Optional[np.ndarray] = None,
    chain_index: Optional[np.ndarray] = None,
    remark: Optional[str] = None,
    parents: Optional[Sequence[str]] = None,
    parents_chain_index: Optional[Sequence[int]] = None
) -> Protein:
    """Assembles a protein from a prediction.
    Args:
      features: Dictionary holding model inputs.
      result: Dictionary holding model outputs.
      b_factors: (Optional) B-factors to use for the protein.
      chain_index: (Optional) Chain indices for multi-chain predictions
      remark: (Optional) Remark about the prediction
      parents: (Optional) List of template names
    Returns:
      A protein instance.
    """
    if b_factors is None:
        b_factors = np.zeros_like(result["final_atom_mask"])

    return Protein(
        aatype=features["aatype"],
        atom_positions=result["final_atom_positions"],
        atom_mask=result["final_atom_mask"],
        residue_index=features["residue_index"] + 1,
        b_factors=b_factors,
        chain_index=chain_index,
        remark=remark,
        parents=parents,
        parents_chain_index=parents_chain_index,
    )