File size: 15,106 Bytes
28974f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Protein data type."""
import dataclasses
import io
from typing import Any, Sequence, Mapping, Optional
import re
import string
from . import residue_constants
from Bio.PDB import PDBParser
import numpy as np
FeatureDict = Mapping[str, np.ndarray]
ModelOutput = Mapping[str, Any] # Is a nested dict.
PICO_TO_ANGSTROM = 0.01
@dataclasses.dataclass(frozen=True)
class Protein:
"""Protein structure representation."""
# Cartesian coordinates of atoms in angstroms. The atom types correspond to
# residue_constants.atom_types, i.e. the first three are N, CA, CB.
atom_positions: np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
aatype: np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
atom_mask: np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
residue_index: np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
b_factors: np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
chain_index: Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
remark: Optional[str] = None
# Templates used to generate this protein (prediction-only)
parents: Optional[Sequence[str]] = None
# Chain corresponding to each parent
parents_chain_index: Optional[Sequence[int]] = None
def from_pdb_string(pdb_str: str, chain_id: Optional[str] = None) -> Protein:
"""Takes a PDB string and constructs a Protein object.
WARNING: All non-standard residue types will be converted into UNK. All
non-standard atoms will be ignored.
Args:
pdb_str: The contents of the pdb file
chain_id: If None, then the pdb file must contain a single chain (which
will be parsed). If chain_id is specified (e.g. A), then only that chain
is parsed.
Returns:
A new `Protein` parsed from the pdb contents.
"""
pdb_fh = io.StringIO(pdb_str)
parser = PDBParser(QUIET=True)
structure = parser.get_structure("none", pdb_fh)
models = list(structure.get_models())
if len(models) != 1:
raise ValueError(
f"Only single model PDBs are supported. Found {len(models)} models."
)
model = models[0]
atom_positions = []
aatype = []
atom_mask = []
residue_index = []
chain_ids = []
b_factors = []
for chain in model:
if(chain_id is not None and chain.id != chain_id):
continue
for res in chain:
if res.id[2] != " ":
raise ValueError(
f"PDB contains an insertion code at chain {chain.id} and residue "
f"index {res.id[1]}. These are not supported."
)
res_shortname = residue_constants.restype_3to1.get(res.resname, "X")
restype_idx = residue_constants.restype_order.get(
res_shortname, residue_constants.restype_num
)
pos = np.zeros((residue_constants.atom_type_num, 3))
mask = np.zeros((residue_constants.atom_type_num,))
res_b_factors = np.zeros((residue_constants.atom_type_num,))
for atom in res:
if atom.name not in residue_constants.atom_types:
continue
pos[residue_constants.atom_order[atom.name]] = atom.coord
mask[residue_constants.atom_order[atom.name]] = 1.0
res_b_factors[
residue_constants.atom_order[atom.name]
] = atom.bfactor
if np.sum(mask) < 0.5:
# If no known atom positions are reported for the residue then skip it.
continue
aatype.append(restype_idx)
atom_positions.append(pos)
atom_mask.append(mask)
residue_index.append(res.id[1])
chain_ids.append(chain.id)
b_factors.append(res_b_factors)
parents = None
parents_chain_index = None
if("PARENT" in pdb_str):
parents = []
parents_chain_index = []
chain_id = 0
for l in pdb_str.split("\n"):
if("PARENT" in l):
if(not "N/A" in l):
parent_names = l.split()[1:]
parents.extend(parent_names)
parents_chain_index.extend([
chain_id for _ in parent_names
])
chain_id += 1
unique_chain_ids = np.unique(chain_ids)
chain_id_mapping = {cid: n for n, cid in enumerate(string.ascii_uppercase)}
chain_index = np.array([chain_id_mapping[cid] for cid in chain_ids])
return Protein(
atom_positions=np.array(atom_positions),
atom_mask=np.array(atom_mask),
aatype=np.array(aatype),
residue_index=np.array(residue_index),
chain_index=chain_index,
b_factors=np.array(b_factors),
parents=parents,
parents_chain_index=parents_chain_index,
)
def from_proteinnet_string(proteinnet_str: str) -> Protein:
tag_re = r'(\[[A-Z]+\]\n)'
tags = [
tag.strip() for tag in re.split(tag_re, proteinnet_str) if len(tag) > 0
]
groups = zip(tags[0::2], [l.split('\n') for l in tags[1::2]])
atoms = ['N', 'CA', 'C']
aatype = None
atom_positions = None
atom_mask = None
for g in groups:
if("[PRIMARY]" == g[0]):
seq = g[1][0].strip()
for i in range(len(seq)):
if(seq[i] not in residue_constants.restypes):
seq[i] = 'X'
aatype = np.array([
residue_constants.restype_order.get(
res_symbol, residue_constants.restype_num
) for res_symbol in seq
])
elif("[TERTIARY]" == g[0]):
tertiary = []
for axis in range(3):
tertiary.append(list(map(float, g[1][axis].split())))
tertiary_np = np.array(tertiary)
atom_positions = np.zeros(
(len(tertiary[0])//3, residue_constants.atom_type_num, 3)
).astype(np.float32)
for i, atom in enumerate(atoms):
atom_positions[:, residue_constants.atom_order[atom], :] = (
np.transpose(tertiary_np[:, i::3])
)
atom_positions *= PICO_TO_ANGSTROM
elif("[MASK]" == g[0]):
mask = np.array(list(map({'-': 0, '+': 1}.get, g[1][0].strip())))
atom_mask = np.zeros(
(len(mask), residue_constants.atom_type_num,)
).astype(np.float32)
for i, atom in enumerate(atoms):
atom_mask[:, residue_constants.atom_order[atom]] = 1
atom_mask *= mask[..., None]
return Protein(
atom_positions=atom_positions,
atom_mask=atom_mask,
aatype=aatype,
residue_index=np.arange(len(aatype)),
b_factors=None,
)
def get_pdb_headers(prot: Protein, chain_id: int = 0) -> Sequence[str]:
pdb_headers = []
remark = prot.remark
if(remark is not None):
pdb_headers.append(f"REMARK {remark}")
parents = prot.parents
parents_chain_index = prot.parents_chain_index
if(parents_chain_index is not None):
parents = [
p for i, p in zip(parents_chain_index, parents) if i == chain_id
]
if(parents is None or len(parents) == 0):
parents = ["N/A"]
pdb_headers.append(f"PARENT {' '.join(parents)}")
return pdb_headers
def add_pdb_headers(prot: Protein, pdb_str: str) -> str:
""" Add pdb headers to an existing PDB string. Useful during multi-chain
recycling
"""
out_pdb_lines = []
lines = pdb_str.split('\n')
remark = prot.remark
if(remark is not None):
out_pdb_lines.append(f"REMARK {remark}")
parents_per_chain = None
if(prot.parents is not None and len(prot.parents) > 0):
parents_per_chain = []
if(prot.parents_chain_index is not None):
cur_chain = prot.parents_chain_index[0]
parent_dict = {}
for p, i in zip(prot.parents, prot.parents_chain_index):
parent_dict.setdefault(str(i), [])
parent_dict[str(i)].append(p)
max_idx = max([int(chain_idx) for chain_idx in parent_dict])
for i in range(max_idx + 1):
chain_parents = parent_dict.get(str(i), ["N/A"])
parents_per_chain.append(chain_parents)
else:
parents_per_chain.append(prot.parents)
else:
parents_per_chain = [["N/A"]]
make_parent_line = lambda p: f"PARENT {' '.join(p)}"
out_pdb_lines.append(make_parent_line(parents_per_chain[0]))
chain_counter = 0
for i, l in enumerate(lines):
if("PARENT" not in l and "REMARK" not in l):
out_pdb_lines.append(l)
if("TER" in l and not "END" in lines[i + 1]):
chain_counter += 1
if(not chain_counter >= len(parents_per_chain)):
chain_parents = parents_per_chain[chain_counter]
else:
chain_parents = ["N/A"]
out_pdb_lines.append(make_parent_line(chain_parents))
return '\n'.join(out_pdb_lines)
def to_pdb(prot: Protein) -> str:
"""Converts a `Protein` instance to a PDB string.
Args:
prot: The protein to convert to PDB.
Returns:
PDB string.
"""
restypes = residue_constants.restypes + ["X"]
res_1to3 = lambda r: residue_constants.restype_1to3.get(restypes[r], "UNK")
atom_types = residue_constants.atom_types
pdb_lines = []
atom_mask = prot.atom_mask
aatype = prot.aatype
atom_positions = prot.atom_positions
residue_index = prot.residue_index.astype(np.int32)
b_factors = prot.b_factors
chain_index = prot.chain_index
if np.any(aatype > residue_constants.restype_num):
raise ValueError("Invalid aatypes.")
headers = get_pdb_headers(prot)
if(len(headers) > 0):
pdb_lines.extend(headers)
n = aatype.shape[0]
atom_index = 1
prev_chain_index = 0
chain_tags = string.ascii_uppercase
# Add all atom sites.
for i in range(n):
res_name_3 = res_1to3(aatype[i])
for atom_name, pos, mask, b_factor in zip(
atom_types, atom_positions[i], atom_mask[i], b_factors[i]
):
if mask < 0.5:
continue
record_type = "ATOM"
name = atom_name if len(atom_name) == 4 else f" {atom_name}"
alt_loc = ""
insertion_code = ""
occupancy = 1.00
element = atom_name[
0
] # Protein supports only C, N, O, S, this works.
charge = ""
chain_tag = "A"
if(chain_index is not None):
chain_tag = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
atom_line = (
f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
f"{res_name_3:>3} {chain_tag:>1}"
f"{residue_index[i]:>4}{insertion_code:>1} "
f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
f"{occupancy:>6.2f}{b_factor:>6.2f} "
f"{element:>2}{charge:>2}"
)
pdb_lines.append(atom_line)
atom_index += 1
should_terminate = (i == n - 1)
if(chain_index is not None):
if(i != n - 1 and chain_index[i + 1] != prev_chain_index):
should_terminate = True
prev_chain_index = chain_index[i + 1]
if(should_terminate):
# Close the chain.
chain_end = "TER"
chain_termination_line = (
f"{chain_end:<6}{atom_index:>5} "
f"{res_1to3(aatype[i]):>3} "
f"{chain_tag:>1}{residue_index[i]:>4}"
)
pdb_lines.append(chain_termination_line)
atom_index += 1
if(i != n - 1):
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(prot, prev_chain_index))
pdb_lines.append("END")
pdb_lines.append("")
return "\n".join(pdb_lines)
def ideal_atom_mask(prot: Protein) -> np.ndarray:
"""Computes an ideal atom mask.
`Protein.atom_mask` typically is defined according to the atoms that are
reported in the PDB. This function computes a mask according to heavy atoms
that should be present in the given sequence of amino acids.
Args:
prot: `Protein` whose fields are `numpy.ndarray` objects.
Returns:
An ideal atom mask.
"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def from_prediction(
features: FeatureDict,
result: ModelOutput,
b_factors: Optional[np.ndarray] = None,
chain_index: Optional[np.ndarray] = None,
remark: Optional[str] = None,
parents: Optional[Sequence[str]] = None,
parents_chain_index: Optional[Sequence[int]] = None
) -> Protein:
"""Assembles a protein from a prediction.
Args:
features: Dictionary holding model inputs.
result: Dictionary holding model outputs.
b_factors: (Optional) B-factors to use for the protein.
chain_index: (Optional) Chain indices for multi-chain predictions
remark: (Optional) Remark about the prediction
parents: (Optional) List of template names
Returns:
A protein instance.
"""
if b_factors is None:
b_factors = np.zeros_like(result["final_atom_mask"])
return Protein(
aatype=features["aatype"],
atom_positions=result["final_atom_positions"],
atom_mask=result["final_atom_mask"],
residue_index=features["residue_index"] + 1,
b_factors=b_factors,
chain_index=chain_index,
remark=remark,
parents=parents,
parents_chain_index=parents_chain_index,
)
|