File size: 3,201 Bytes
39e6407 ca087a4 39e6407 ca087a4 39e6407 ab08416 39e6407 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fake News Filipino Dataset"""
import csv
import os
import datasets
from datasets.tasks import TextClassification
_DESCRIPTION = """\
Low-Resource Fake News Detection Corpora in Filipino. The first of its kind. Contains 3,206 expertly-labeled news samples, half of which are real and half of which are fake.
"""
_CITATION = """\
@inproceedings{cruz2020localization,
title={Localization of Fake News Detection via Multitask Transfer Learning},
author={Cruz, Jan Christian Blaise and Tan, Julianne Agatha and Cheng, Charibeth},
booktitle={Proceedings of The 12th Language Resources and Evaluation Conference},
pages={2596--2604},
year={2020}
}
"""
_HOMEPAGE = "https://github.com/jcblaisecruz02/Tagalog-fake-news"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
_URL = "https://s3.us-east-2.amazonaws.com/blaisecruz.com/datasets/fakenews/fakenews.zip"
class FakeNewsFilipino(datasets.GeneratorBasedBuilder):
"""Low-Resource Fake News Detection Corpora in Filipino"""
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{"label": datasets.features.ClassLabel(names=["0", "1"]), "article": datasets.Value("string")}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[TextClassification(text_column="article", label_column="label")],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URL)
train_path = os.path.join(data_dir, "fakenews", "full.csv")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_path,
"split": "train",
},
)
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
)
next(csv_reader)
for id_, row in enumerate(csv_reader):
label, article = row
yield id_, {"label": label, "article": article}
|