Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
10K - 100K
metadata
language:
- en
task_categories:
- token-classification
task_ids:
- named-entity-recognition
tags:
- ner
- conll2003
size_categories:
- 10K<n<100K
CoNLL-2003 Named Entity Recognition Dataset
This is a self-contained version of the CoNLL-2003 dataset for Named Entity Recognition (NER).
🔒 No trust_remote_code required - This dataset uses only standard parquet files with no custom loading scripts.
Dataset Description
The CoNLL-2003 shared task dataset consists of newswire text from the Reuters corpus tagged with four entity types: persons (PER), locations (LOC), organizations (ORG), and miscellaneous (MISC).
Dataset Structure
Data Instances
Each instance contains:
id: Unique identifier for the exampletokens: List of tokens (words)pos_tags: List of part-of-speech tagschunk_tags: List of chunk tagsner_tags: List of named entity tags
Data Splits
- train: 14,041 examples
- validation: 3,250 examples
- test: 3,453 examples
Features
- tokens (list of strings): The words in the sentence
- pos_tags (list of ClassLabel): Part-of-speech tags
- chunk_tags (list of ClassLabel): Chunk tags (phrases)
- ner_tags (list of ClassLabel): Named entity tags with BIO scheme
- O: Outside any named entity
- B-PER: Beginning of a person name
- I-PER: Inside a person name
- B-ORG: Beginning of an organization name
- I-ORG: Inside an organization name
- B-LOC: Beginning of a location name
- I-LOC: Inside a location name
- B-MISC: Beginning of a miscellaneous entity
- I-MISC: Inside a miscellaneous entity
Usage
This dataset is completely self-contained and does NOT require trust_remote_code=True. All data is bundled in parquet files.
Loading from Hugging Face Hub
from datasets import load_dataset
# Load the dataset directly from the Hub
dataset = load_dataset("jacobmitchinson/conll2003")
# Access splits
train_data = dataset["train"]
validation_data = dataset["validation"]
test_data = dataset["test"]
Loading from Local Files
from datasets import load_dataset
# Load the dataset from local parquet files
dataset = load_dataset('parquet', data_files={
'train': 'data/train.parquet',
'validation': 'data/validation.parquet',
'test': 'data/test.parquet'
})
Example Usage
# Get an example
example = train_data[0]
print("Tokens:", example["tokens"])
# Output: ['EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'lamb', '.']
print("NER tags:", example["ner_tags"])
# Output: [3, 0, 7, 0, 0, 0, 7, 0, 0]
# Convert NER tags to readable labels
ner_feature = train_data.features["ner_tags"].feature
ner_labels = [ner_feature.int2str(tag) for tag in example["ner_tags"]]
print("NER labels:", ner_labels)
# Output: ['B-ORG', 'O', 'B-MISC', 'O', 'O', 'O', 'B-MISC', 'O', 'O']
Citation
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
author = "Tjong Kim Sang, Erik F. and De Meulder, Fien",
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
year = "2003",
pages = "142--147",
url = "https://www.aclweb.org/anthology/W03-0419",
}
License
The dataset is licensed under the same terms as the original CoNLL-2003 dataset.