itsuzef commited on
Commit
b8bf17f
·
verified ·
1 Parent(s): 744bcf8

create readme

Browse files
Files changed (1) hide show
  1. README.md +146 -0
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - audio-classification
5
+ - multi-class-classification
6
+ tags:
7
+ - audio
8
+ - music
9
+ - electronic-music
10
+ - house-music
11
+ - machine-learning
12
+ - music-information-retrieval
13
+ - stem-classification
14
+ pretty_name: HTMOneShotLoopClassification
15
+ size_categories:
16
+ - 1K<n<10K
17
+ ---
18
+
19
+ # Dataset Card for HTMOneShotLoopClassification
20
+
21
+ ## Dataset Description
22
+
23
+ - **Homepage**: https://github.com/itsuzef/HTMOneShotLoopClassification
24
+ - **Repository**: https://github.com/itsuzef/HTMOneShotLoopClassification
25
+ - **Paper**: [To be added - link to paper when published]
26
+ - **DOI**: [10.5281/zenodo.17872191](https://doi.org/10.5281/zenodo.17872191)
27
+
28
+ ### Dataset Summary
29
+
30
+ HTMOneShotLoopClassification is a dataset of 5,561 electronic music samples (one-shots and loops) from house, tech house, and minimal techno genres. Each sample is labeled with one of 8 stem categories and includes 55 extracted audio features for machine learning applications.
31
+
32
+ ### Supported Tasks and Leaderboards
33
+
34
+ - **Audio Classification**: Multi-class classification into 8 stem categories
35
+ - **Baseline Performance**: 85.41% accuracy using SVM with RBF kernel
36
+
37
+ ### Languages
38
+
39
+ - Audio samples (no spoken language)
40
+ - Metadata in English
41
+
42
+ ## Dataset Structure
43
+
44
+ ### Data Instances
45
+
46
+ Each instance contains:
47
+ - **Filename**: Original audio file name
48
+ - **Stem Label**: One of 8 categories (kick, snare, hihat, bass, synth, vocal, percussion, fx)
49
+ - **Category**: Sample type (one-shots or loops)
50
+ - **55 Audio Features**: Extracted using librosa
51
+
52
+ ### Data Fields
53
+
54
+ | Field | Type | Description |
55
+ |-------|------|-------------|
56
+ | filename | string | Original audio filename |
57
+ | stem | categorical | Target label (8 categories) |
58
+ | category | categorical | one-shots or loops |
59
+ | duration | float | Audio duration in seconds |
60
+ | sample_rate | integer | Sample rate (typically 44100 Hz) |
61
+ | rms | float | Root mean square energy |
62
+ | zcr | float | Zero crossing rate |
63
+ | spectral_centroid | float | Spectral centroid in Hz |
64
+ | ... | ... | (See metadata_schema.json for all 55 features) |
65
+
66
+ ### Data Splits
67
+
68
+ Recommended splits:
69
+ - **Train**: 80% (4,450 samples)
70
+ - **Validation**: 10% (556 samples)
71
+ - **Test**: 10% (556 samples)
72
+
73
+ ## Dataset Creation
74
+
75
+ ### Curation Rationale
76
+
77
+ The dataset was created to address the lack of curated electronic music sample datasets with:
78
+ - High-quality professional samples
79
+ - Consistent feature extraction
80
+ - Genre-specific focus (house/tech house/minimal techno)
81
+ - Both one-shots and loops
82
+
83
+ ### Source Data
84
+
85
+ - Professional electronic music sample packs
86
+ - Curated from house, tech house, and minimal techno collections
87
+ - Quality-controlled and deduplicated
88
+
89
+ ### Annotations
90
+
91
+ - **Annotation process**: Automatic categorization based on folder name patterns, with manual review for ambiguous cases
92
+ - **Annotators**: Domain experts
93
+ - **Annotation guidelines**: Based on standard electronic music production categories
94
+
95
+ ## Considerations for Using the Data
96
+
97
+ ### Social Impact
98
+
99
+ This dataset enables research in:
100
+ - Automated music production tools
101
+ - Audio classification systems
102
+ - Electronic music analysis
103
+
104
+ ### Discussion of Biases
105
+
106
+ - **Genre Bias**: Focused on house, tech house, and minimal techno (not all electronic music)
107
+ - **Class Balance**: Good balance achieved (FX: 561, all categories within 80-130% of average)
108
+ - **Key Coverage**: Not all categories have musical key information (only bass and synth have 100% coverage)
109
+
110
+ ### Other Known Limitations
111
+
112
+ - Dataset size: 5,561 samples (moderate size)
113
+ - Limited to specific sub-genres of electronic music
114
+ - Some categories have low key coverage (important for harmonic mixing applications)
115
+
116
+ ## Additional Information
117
+
118
+ ### Dataset Curators
119
+
120
+ - Youssef Hemimy
121
+
122
+ ### Licensing Information
123
+
124
+ **Dataset License**: CC-BY-4.0 (Creative Commons Attribution 4.0 International)
125
+
126
+ **License Scope**: This license applies to the CSV dataset containing extracted audio features and metadata, documentation, and scripts. You are free to use, share, and adapt the dataset for any purpose, including commercial use, provided you give appropriate credit.
127
+
128
+ **Original Audio Files**: The original audio files used to generate this dataset are NOT included and are NOT covered by this license. The audio files were obtained from commercial sample packs under their respective licenses, which typically prohibit redistribution. Users must obtain the original audio files separately if needed.
129
+
130
+ ### Citation Information
131
+ x
132
+ @dataset{hemimy2025htmoneshotloop,
133
+ title={HTMOneShotLoopClassification: A Dataset of House, Tech House, and Minimal Techno Samples for Stem Category Classification},
134
+ author={Hemimy, Youssef},
135
+ year={2025},
136
+ publisher={Zenodo},
137
+ doi={10.5281/zenodo.17872191}
138
+ }### Contributions
139
+
140
+ Contributions and feedback are welcome. Please see the repository for contribution guidelines.
141
+
142
+ ## Links
143
+
144
+ - **GitHub**: https://github.com/itsuzef/HTMOneShotLoopClassification
145
+ - **Zenodo**: https://doi.org/10.5281/zenodo.17872191
146
+ - **Documentation**: See GitHub repository for full documentation