File size: 1,863 Bytes
9bc24e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

"""
""" # TODO
try:
    import ir_datasets
except ImportError as e:
    raise ImportError('ir-datasets package missing; `pip install ir-datasets`')
import datasets

IRDS_ID = 'lotte/recreation/test'
IRDS_ENTITY_TYPES = {'docs': {'doc_id': 'string', 'text': 'string'}}

_CITATION = '@article{Santhanam2021ColBERTv2,\n  title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction",\n  author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", \n  journal= "arXiv preprint arXiv:2112.01488",\n  year = "2021",\n  url = "https://arxiv.org/abs/2112.01488"\n}'

_DESCRIPTION = "" # TODO

class lotte_recreation_test(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}),
            homepage=f"https://ir-datasets.com/lotte#lotte/recreation/test",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        return [datasets.SplitGenerator(name=self.config.name)]

    def _generate_examples(self):
        dataset = ir_datasets.load(IRDS_ID)
        for i, item in enumerate(getattr(dataset, self.config.name)):
            key = i
            if self.config.name == 'docs':
                key = item.doc_id
            elif self.config.name == 'queries':
                key = item.query_id
            yield key, item._asdict()

    def as_dataset(self, split=None, *args, **kwargs):
        split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer
        return super().as_dataset(split, *args, **kwargs)