File size: 1,842 Bytes
82515c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
pretty_name: '`disks45/nocr/trec-robust-2004`'
viewer: false
source_datasets: ['irds/disks45_nocr']
task_categories:
- text-retrieval
---
# Dataset Card for `disks45/nocr/trec-robust-2004`
The `disks45/nocr/trec-robust-2004` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/disks45#disks45/nocr/trec-robust-2004).
# Data
This dataset provides:
- `queries` (i.e., topics); count=250
- `qrels`: (relevance assessments); count=311,410
- For `docs`, use [`irds/disks45_nocr`](https://huggingface.co/datasets/irds/disks45_nocr)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/disks45_nocr_trec-robust-2004', 'queries')
for record in queries:
record # {'query_id': ..., 'title': ..., 'description': ..., 'narrative': ...}
qrels = load_dataset('irds/disks45_nocr_trec-robust-2004', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in 🤗 Dataset format.
## Citation Information
```
@misc{Voorhees1996Disks45,
title = {NIST TREC Disks 4 and 5: Retrieval Test Collections Document Set},
author = {Ellen M. Voorhees},
doi = {10.18434/t47g6m},
year = {1996},
publisher = {National Institute of Standards and Technology}
}
@inproceedings{Voorhees2004Robust,
title={Overview of the TREC 2004 Robust Retrieval Track},
author={Ellen Voorhees},
booktitle={TREC},
year={2004}
}
@inproceedings{Huston2014ACO,
title={A Comparison of Retrieval Models using Term Dependencies},
author={Samuel Huston and W. Bruce Croft},
booktitle={CIKM},
year={2014}
}
```
|