File size: 2,567 Bytes
2f3c142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

"""
""" # TODO
try:
    import ir_datasets
except ImportError as e:
    raise ImportError('ir-datasets package missing; `pip install ir-datasets`')
import datasets

IRDS_ID = 'cord19/fulltext/trec-covid'
IRDS_ENTITY_TYPES = {'queries': {'query_id': 'string', 'title': 'string', 'description': 'string', 'narrative': 'string'}, 'qrels': {'query_id': 'string', 'doc_id': 'string', 'relevance': 'int64', 'iteration': 'string'}}

_CITATION = '@article{Voorhees2020TrecCovid,\n  title={TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection},\n  author={E. Voorhees and Tasmeer Alam and Steven Bedrick and Dina Demner-Fushman and W. Hersh and Kyle Lo and Kirk Roberts and I. Soboroff and Lucy Lu Wang},\n  journal={ArXiv},\n  year={2020},\n  volume={abs/2005.04474}\n}\n@article{Wang2020Cord19,\n  title={CORD-19: The Covid-19 Open Research Dataset},\n  author={Lucy Lu Wang and Kyle Lo and Yoganand Chandrasekhar and Russell Reas and Jiangjiang Yang and Darrin Eide and K. Funk and Rodney Michael Kinney and Ziyang Liu and W. Merrill and P. Mooney and D. Murdick and Devvret Rishi and Jerry Sheehan and Zhihong Shen and B. Stilson and A. Wade and K. Wang and Christopher Wilhelm and Boya Xie and D. Raymond and Daniel S. Weld and Oren Etzioni and Sebastian Kohlmeier},\n  journal={ArXiv},\n  year={2020}\n}'

_DESCRIPTION = "" # TODO

class cord19_fulltext_trec_covid(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}),
            homepage=f"https://ir-datasets.com/cord19#cord19/fulltext/trec-covid",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        return [datasets.SplitGenerator(name=self.config.name)]

    def _generate_examples(self):
        dataset = ir_datasets.load(IRDS_ID)
        for i, item in enumerate(getattr(dataset, self.config.name)):
            key = i
            if self.config.name == 'docs':
                key = item.doc_id
            elif self.config.name == 'queries':
                key = item.query_id
            yield key, item._asdict()

    def as_dataset(self, split=None, *args, **kwargs):
        split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer
        return super().as_dataset(split, *args, **kwargs)