File size: 32,734 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
;;; Guile VM code converters
;; Copyright (C) 2001, 2009, 2012, 2013 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Code:
(define-module (language scheme decompile-tree-il)
#:use-module (language tree-il)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-26)
#:use-module (ice-9 receive)
#:use-module (ice-9 vlist)
#:use-module (ice-9 match)
#:use-module (system base syntax)
#:export (decompile-tree-il))
(define (decompile-tree-il e env opts)
(apply do-decompile e env opts))
(define* (do-decompile e env
#:key
(use-derived-syntax? #t)
(avoid-lambda? #t)
(use-case? #t)
(strip-numeric-suffixes? #f)
#:allow-other-keys)
(receive (output-name-table occurrence-count-table)
(choose-output-names e use-derived-syntax? strip-numeric-suffixes?)
(define (output-name s) (hashq-ref output-name-table s))
(define (occurrence-count s) (hashq-ref occurrence-count-table s))
(define (const x) (lambda (_) x))
(define (atom? x) (not (or (pair? x) (vector? x))))
(define (build-void) '(if #f #f))
(define (build-begin es)
(match es
(() (build-void))
((e) e)
(_ `(begin ,@es))))
(define (build-lambda-body e)
(match e
(('let () body ...) body)
(('begin es ...) es)
(_ (list e))))
(define (build-begin-body e)
(match e
(('begin es ...) es)
(_ (list e))))
(define (build-define name e)
(match e
((? (const avoid-lambda?)
('lambda formals body ...))
`(define (,name ,@formals) ,@body))
((? (const avoid-lambda?)
('lambda* formals body ...))
`(define* (,name ,@formals) ,@body))
(_ `(define ,name ,e))))
(define (build-let names vals body)
(match `(let ,(map list names vals)
,@(build-lambda-body body))
((_ () e) e)
((_ (b) ('let* (bs ...) body ...))
`(let* (,b ,@bs) ,@body))
((? (const use-derived-syntax?)
(_ (b1) ('let (b2) body ...)))
`(let* (,b1 ,b2) ,@body))
(e e)))
(define (build-letrec in-order? names vals body)
(match `(,(if in-order? 'letrec* 'letrec)
,(map list names vals)
,@(build-lambda-body body))
((_ () e) e)
((_ () body ...) `(let () ,@body))
((_ ((name ('lambda (formals ...) body ...)))
(name args ...))
(=> failure)
(if (= (length formals) (length args))
`(let ,name ,(map list formals args) ,@body)
(failure)))
((? (const avoid-lambda?)
('letrec* _ body ...))
`(let ()
,@(map build-define names vals)
,@body))
(e e)))
(define (build-if test consequent alternate)
(match alternate
(('if #f _) `(if ,test ,consequent))
(_ `(if ,test ,consequent ,alternate))))
(define (build-and xs)
(match xs
(() #t)
((x) x)
(_ `(and ,@xs))))
(define (build-or xs)
(match xs
(() #f)
((x) x)
(_ `(or ,@xs))))
(define (case-test-var test)
(match test
(('memv (? atom? v) ('quote (datums ...)))
v)
(('eqv? (? atom? v) ('quote datum))
v)
(_ #f)))
(define (test->datums v test)
(match (cons v test)
((v 'memv v ('quote (xs ...)))
xs)
((v 'eqv? v ('quote x))
(list x))
(_ #f)))
(define (build-else-tail e)
(match e
(('if #f _) '())
(('and xs ... x) `((,(build-and xs) ,@(build-begin-body x))
(else #f)))
(_ `((else ,@(build-begin-body e))))))
(define (build-cond-else-tail e)
(match e
(('cond clauses ...) clauses)
(_ (build-else-tail e))))
(define (build-case-else-tail v e)
(match (cons v e)
((v 'case v clauses ...)
clauses)
((v 'if ('memv v ('quote (xs ...))) consequent . alternate*)
`((,xs ,@(build-begin-body consequent))
,@(build-case-else-tail v (build-begin alternate*))))
((v 'if ('eqv? v ('quote x)) consequent . alternate*)
`(((,x) ,@(build-begin-body consequent))
,@(build-case-else-tail v (build-begin alternate*))))
(_ (build-else-tail e))))
(define (clauses+tail clauses)
(match clauses
((cs ... (and c ('else . _))) (values cs (list c)))
(_ (values clauses '()))))
(define (build-cond tests consequents alternate)
(case (length tests)
((0) alternate)
((1) (build-if (car tests) (car consequents) alternate))
(else `(cond ,@(map (lambda (test consequent)
`(,test ,@(build-begin-body consequent)))
tests consequents)
,@(build-cond-else-tail alternate)))))
(define (build-cond-or-case tests consequents alternate)
(if (not use-case?)
(build-cond tests consequents alternate)
(let* ((v (and (not (null? tests))
(case-test-var (car tests))))
(datum-lists (take-while identity
(map (cut test->datums v <>)
tests)))
(n (length datum-lists))
(tail (build-case-else-tail v (build-cond
(drop tests n)
(drop consequents n)
alternate))))
(receive (clauses tail) (clauses+tail tail)
(let ((n (+ n (length clauses)))
(datum-lists (append datum-lists
(map car clauses)))
(consequents (append consequents
(map build-begin
(map cdr clauses)))))
(if (< n 2)
(build-cond tests consequents alternate)
`(case ,v
,@(map cons datum-lists (map build-begin-body
(take consequents n)))
,@tail)))))))
(define (recurse e)
(define (recurse-body e)
(build-lambda-body (recurse e)))
(record-case e
((<void>)
(build-void))
((<const> exp)
(if (and (self-evaluating? exp) (not (vector? exp)))
exp
`(quote ,exp)))
((<seq> head tail)
(build-begin (cons (recurse head)
(build-begin-body
(recurse tail)))))
((<call> proc args)
(match `(,(recurse proc) ,@(map recurse args))
((('lambda (formals ...) body ...) args ...)
(=> failure)
(if (= (length formals) (length args))
(build-let formals args (build-begin body))
(failure)))
(e e)))
((<primcall> name args)
`(,name ,@(map recurse args)))
((<primitive-ref> name)
name)
((<lexical-ref> gensym)
(output-name gensym))
((<lexical-set> gensym exp)
`(set! ,(output-name gensym) ,(recurse exp)))
((<module-ref> mod name public?)
`(,(if public? '@ '@@) ,mod ,name))
((<module-set> mod name public? exp)
`(set! (,(if public? '@ '@@) ,mod ,name) ,(recurse exp)))
((<toplevel-ref> name)
name)
((<toplevel-set> name exp)
`(set! ,name ,(recurse exp)))
((<toplevel-define> name exp)
(build-define name (recurse exp)))
((<lambda> meta body)
(if body
(let ((body (recurse body))
(doc (assq-ref meta 'documentation)))
(if (not doc)
body
(match body
(('lambda formals body ...)
`(lambda ,formals ,doc ,@body))
(('lambda* formals body ...)
`(lambda* ,formals ,doc ,@body))
(('case-lambda (formals body ...) clauses ...)
`(case-lambda (,formals ,doc ,@body) ,@clauses))
(('case-lambda* (formals body ...) clauses ...)
`(case-lambda* (,formals ,doc ,@body) ,@clauses))
(e e))))
'(case-lambda)))
((<lambda-case> req opt rest kw inits gensyms body alternate)
(let ((names (map output-name gensyms)))
(cond
((and (not opt) (not kw) (not alternate))
`(lambda ,(if rest (apply cons* names) names)
,@(recurse-body body)))
((and (not opt) (not kw))
(let ((alt-expansion (recurse alternate))
(formals (if rest (apply cons* names) names)))
(case (car alt-expansion)
((lambda)
`(case-lambda (,formals ,@(recurse-body body))
,(cdr alt-expansion)))
((lambda*)
`(case-lambda* (,formals ,@(recurse-body body))
,(cdr alt-expansion)))
((case-lambda)
`(case-lambda (,formals ,@(recurse-body body))
,@(cdr alt-expansion)))
((case-lambda*)
`(case-lambda* (,formals ,@(recurse-body body))
,@(cdr alt-expansion))))))
(else
(let* ((alt-expansion (and alternate (recurse alternate)))
(nreq (length req))
(nopt (if opt (length opt) 0))
(restargs (if rest (list-ref names (+ nreq nopt)) '()))
(reqargs (list-head names nreq))
(optargs (if opt
`(#:optional
,@(map list
(list-head (list-tail names nreq) nopt)
(map recurse
(list-head inits nopt))))
'()))
(kwargs (if kw
`(#:key
,@(map list
(map output-name (map caddr (cdr kw)))
(map recurse
(list-tail inits nopt))
(map car (cdr kw)))
,@(if (car kw)
'(#:allow-other-keys)
'()))
'()))
(formals `(,@reqargs ,@optargs ,@kwargs . ,restargs)))
(if (not alt-expansion)
`(lambda* ,formals ,@(recurse-body body))
(case (car alt-expansion)
((lambda lambda*)
`(case-lambda* (,formals ,@(recurse-body body))
,(cdr alt-expansion)))
((case-lambda case-lambda*)
`(case-lambda* (,formals ,@(recurse-body body))
,@(cdr alt-expansion))))))))))
((<conditional> test consequent alternate)
(define (simplify-test e)
(match e
(('if ('eqv? (? atom? v) ('quote a)) #t ('eqv? v ('quote b)))
`(memv ,v '(,a ,b)))
(('if ('eqv? (? atom? v) ('quote a)) #t ('memv v ('quote (bs ...))))
`(memv ,v '(,a ,@bs)))
(('case (? atom? v)
((datum) #t) ...
('else ('eqv? v ('quote last-datum))))
`(memv ,v '(,@datum ,last-datum)))
(_ e)))
(match `(if ,(simplify-test (recurse test))
,(recurse consequent)
,@(if (void? alternate) '()
(list (recurse alternate))))
(('if test ('if ('and xs ...) consequent))
(build-if (build-and (cons test xs))
consequent
(build-void)))
((? (const use-derived-syntax?)
('if test1 ('if test2 consequent)))
(build-if (build-and (list test1 test2))
consequent
(build-void)))
(('if (? atom? x) x ('or ys ...))
(build-or (cons x ys)))
((? (const use-derived-syntax?)
('if (? atom? x) x y))
(build-or (list x y)))
(('if test consequent)
`(if ,test ,consequent))
(('if test ('and xs ...) #f)
(build-and (cons test xs)))
((? (const use-derived-syntax?)
('if test consequent #f))
(build-and (list test consequent)))
((? (const use-derived-syntax?)
('if test1 consequent1
('if test2 consequent2 . alternate*)))
(build-cond-or-case (list test1 test2)
(list consequent1 consequent2)
(build-begin alternate*)))
(('if test consequent ('cond clauses ...))
`(cond (,test ,@(build-begin-body consequent))
,@clauses))
(('if ('memv (? atom? v) ('quote (xs ...))) consequent
('case v clauses ...))
`(case ,v (,xs ,@(build-begin-body consequent))
,@clauses))
(('if ('eqv? (? atom? v) ('quote x)) consequent
('case v clauses ...))
`(case ,v ((,x) ,@(build-begin-body consequent))
,@clauses))
(e e)))
((<let> gensyms vals body)
(match (build-let (map output-name gensyms)
(map recurse vals)
(recurse body))
(('let ((v e)) ('or v xs ...))
(=> failure)
(if (and (not (null? gensyms))
(= 3 (occurrence-count (car gensyms))))
`(or ,e ,@xs)
(failure)))
(('let ((v e)) ('case v clauses ...))
(=> failure)
(if (and (not (null? gensyms))
;; FIXME: This fails if any of the 'memv's were
;; optimized into multiple 'eqv?'s, because the
;; occurrence count will be higher than we expect.
(= (occurrence-count (car gensyms))
(1+ (length (clauses+tail clauses)))))
`(case ,e ,@clauses)
(failure)))
(e e)))
((<letrec> in-order? gensyms vals body)
(build-letrec in-order?
(map output-name gensyms)
(map recurse vals)
(recurse body)))
((<fix> gensyms vals body)
;; not a typo, we really do translate back to letrec. use letrec* since it
;; doesn't matter, and the naive letrec* transformation does not require an
;; inner let.
(build-letrec #t
(map output-name gensyms)
(map recurse vals)
(recurse body)))
((<let-values> exp body)
`(call-with-values (lambda () ,@(recurse-body exp))
,(recurse (make-lambda #f '() body))))
((<prompt> escape-only? tag body handler)
`(call-with-prompt
,(recurse tag)
,(if escape-only?
`(lambda () ,(recurse body))
(recurse body))
,(recurse handler)))
((<abort> tag args tail)
`(apply abort ,(recurse tag) ,@(map recurse args)
,(recurse tail)))))
(values (recurse e) env)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Algorithm for choosing better variable names
;; ============================================
;;
;; First we perform an analysis pass, collecting the following
;; information:
;;
;; * For each gensym: how many occurrences will occur in the output?
;;
;; * For each gensym A: which gensyms does A conflict with? Gensym A
;; and gensym B conflict if they have the same base name (usually the
;; same as the source name, but see below), and if giving them the
;; same name would cause a bad variable reference due to unintentional
;; variable capture.
;;
;; The occurrence counter is indexed by gensym and is global (within each
;; invocation of the algorithm), implemented using a hash table. We also
;; keep a global mapping from gensym to source name as provided by the
;; binding construct (we prefer not to trust the source names in the
;; lexical ref or set).
;;
;; As we recurse down into lexical binding forms, we keep track of a
;; mapping from base name to an ordered list of bindings, innermost
;; first. When we encounter a variable occurrence, we increment the
;; counter, look up the base name (preferring not to trust the 'name' in
;; the lexical ref or set), and then look up the bindings currently in
;; effect for that base name. Hopefully our gensym will be the first
;; (innermost) binding. If not, we register a conflict between the
;; referenced gensym and the other bound gensyms with the same base name
;; that shadow the binding we want. These are simply the gensyms on the
;; binding list that come before our gensym.
;;
;; Top-level bindings are treated specially. Whenever top-level
;; references are found, they conflict with every lexical binding
;; currently in effect with the same base name. They are guaranteed to
;; be assigned to their source names. For purposes of recording
;; conflicts (which are normally keyed on gensyms) top-level identifiers
;; are assigned a pseudo-gensym that is an interned pair of the form
;; (top-level . <name>). This allows them to be compared using 'eq?'
;; like other gensyms.
;;
;; The base name is normally just the source name. However, if the
;; source name has a suffix of the form "-N" (where N is a positive
;; integer without leading zeroes), then we strip that suffix (multiple
;; times if necessary) to form the base name. We must do this because
;; we add suffixes of that form in order to resolve conflicts, and we
;; must ensure that only identifiers with the same base name can
;; possibly conflict with each other.
;;
;; XXX FIXME: Currently, primitives are treated exactly like top-level
;; bindings. This handles conflicting lexical bindings properly, but
;; does _not_ handle the case where top-level bindings conflict with the
;; needed primitives.
;;
;; Also note that this requires that 'choose-output-names' be kept in
;; sync with 'tree-il->scheme'. Primitives that are introduced by
;; 'tree-il->scheme' must be anticipated by 'choose-output-name'.
;;
;; We also ensure that lexically-bound identifiers found in operator
;; position will never be assigned one of the standard primitive names.
;; This is needed because 'tree-il->scheme' recognizes primitive names
;; in operator position and assumes that they have the standard
;; bindings.
;;
;;
;; How we assign an output name to each gensym
;; ===========================================
;;
;; We process the gensyms in order of decreasing occurrence count, with
;; each gensym choosing the best output name possible, as long as it
;; isn't the same name as any of the previously-chosen output names of
;; conflicting gensyms.
;;
;;
;; 'choose-output-names' analyzes the top-level form e, chooses good
;; variable names that are as close as possible to the source names,
;; and returns two values:
;;
;; * a hash table mapping gensym to output name
;; * a hash table mapping gensym to number of occurrences
;;
(define choose-output-names
(let ()
(define primitive?
;; This is a list of primitives that 'tree-il->scheme' assumes
;; will have the standard bindings when found in operator
;; position.
(let* ((primitives '(if quote @ @@ set! define define*
begin let let* letrec letrec*
and or cond case
lambda lambda* case-lambda case-lambda*
apply call-with-values dynamic-wind
with-fluids fluid-ref fluid-set!
call-with-prompt abort memv eqv?))
(table (make-hash-table (length primitives))))
(for-each (cut hashq-set! table <> #t) primitives)
(lambda (name) (hashq-ref table name))))
;; Repeatedly strip suffix of the form "-N", where N is a string
;; that could be produced by number->string given a positive
;; integer. In other words, the first digit of N may not be 0.
(define compute-base-name
(let ((digits (string->char-set "0123456789")))
(define (base-name-string str)
(let ((i (string-skip-right str digits)))
(if (and i (< (1+ i) (string-length str))
(eq? #\- (string-ref str i))
(not (eq? #\0 (string-ref str (1+ i)))))
(base-name-string (substring str 0 i))
str)))
(lambda (sym)
(string->symbol (base-name-string (symbol->string sym))))))
;; choose-output-names
(lambda (e use-derived-syntax? strip-numeric-suffixes?)
(define lexical-gensyms '())
(define top-level-intern!
(let ((table (make-hash-table)))
(lambda (name)
(let ((h (hashq-create-handle! table name #f)))
(or (cdr h) (begin (set-cdr! h (cons 'top-level name))
(cdr h)))))))
(define (top-level? s) (pair? s))
(define (top-level-name s) (cdr s))
(define occurrence-count-table (make-hash-table))
(define (occurrence-count s) (or (hashq-ref occurrence-count-table s) 0))
(define (increment-occurrence-count! s)
(let ((h (hashq-create-handle! occurrence-count-table s 0)))
(if (zero? (cdr h))
(set! lexical-gensyms (cons s lexical-gensyms)))
(set-cdr! h (1+ (cdr h)))))
(define base-name
(let ((table (make-hash-table)))
(lambda (name)
(let ((h (hashq-create-handle! table name #f)))
(or (cdr h) (begin (set-cdr! h (compute-base-name name))
(cdr h)))))))
(define source-name-table (make-hash-table))
(define (set-source-name! s name)
(if (not (top-level? s))
(let ((name (if strip-numeric-suffixes?
(base-name name)
name)))
(hashq-set! source-name-table s name))))
(define (source-name s)
(if (top-level? s)
(top-level-name s)
(hashq-ref source-name-table s)))
(define conflict-table (make-hash-table))
(define (conflicts s) (or (hashq-ref conflict-table s) '()))
(define (add-conflict! a b)
(define (add! a b)
(if (not (top-level? a))
(let ((h (hashq-create-handle! conflict-table a '())))
(if (not (memq b (cdr h)))
(set-cdr! h (cons b (cdr h)))))))
(add! a b)
(add! b a))
(let recurse-with-bindings ((e e) (bindings vlist-null))
(let recurse ((e e))
;; We call this whenever we encounter a top-level ref or set
(define (top-level name)
(let ((bname (base-name name)))
(let ((s (top-level-intern! name))
(conflicts (vhash-foldq* cons '() bname bindings)))
(for-each (cut add-conflict! s <>) conflicts))))
;; We call this whenever we encounter a primitive reference.
;; We must also call it for every primitive that might be
;; inserted by 'tree-il->scheme'. It is okay to call this
;; even when 'tree-il->scheme' will not insert the named
;; primitive; the worst that will happen is for a lexical
;; variable of the same name to be renamed unnecessarily.
(define (primitive name) (top-level name))
;; We call this whenever we encounter a lexical ref or set.
(define (lexical s)
(increment-occurrence-count! s)
(let ((conflicts
(take-while
(lambda (s*) (not (eq? s s*)))
(reverse! (vhash-foldq* cons
'()
(base-name (source-name s))
bindings)))))
(for-each (cut add-conflict! s <>) conflicts)))
(record-case e
((<void>) (primitive 'if)) ; (if #f #f)
((<const>) (primitive 'quote))
((<call> proc args)
(if (lexical-ref? proc)
(let* ((gensym (lexical-ref-gensym proc))
(name (source-name gensym)))
;; If the operator position contains a bare variable
;; reference with the same source name as a standard
;; primitive, we must ensure that it will be given a
;; different name, so that 'tree-il->scheme' will not
;; misinterpret the resulting expression.
(if (primitive? name)
(add-conflict! gensym (top-level-intern! name)))))
(recurse proc)
(for-each recurse args))
((<primitive-ref> name) (primitive name))
((<primcall> name args) (primitive name) (for-each recurse args))
((<lexical-ref> gensym) (lexical gensym))
((<lexical-set> gensym exp)
(primitive 'set!) (lexical gensym) (recurse exp))
((<module-ref> public?) (primitive (if public? '@ '@@)))
((<module-set> public? exp)
(primitive 'set!) (primitive (if public? '@ '@@)) (recurse exp))
((<toplevel-ref> name) (top-level name))
((<toplevel-set> name exp)
(primitive 'set!) (top-level name) (recurse exp))
((<toplevel-define> name exp) (top-level name) (recurse exp))
((<conditional> test consequent alternate)
(cond (use-derived-syntax?
(primitive 'and) (primitive 'or)
(primitive 'cond) (primitive 'case)
(primitive 'else) (primitive '=>)))
(primitive 'if)
(recurse test) (recurse consequent) (recurse alternate))
((<seq> head tail)
(primitive 'begin) (recurse head) (recurse tail))
((<lambda> body)
(if body (recurse body) (primitive 'case-lambda)))
((<lambda-case> req opt rest kw inits gensyms body alternate)
(primitive 'lambda)
(cond ((or opt kw alternate)
(primitive 'lambda*)
(primitive 'case-lambda)
(primitive 'case-lambda*)))
(primitive 'let)
(if use-derived-syntax? (primitive 'let*))
(let* ((names (append req (or opt '()) (if rest (list rest) '())
(map cadr (if kw (cdr kw) '()))))
(base-names (map base-name names))
(body-bindings
(fold vhash-consq bindings base-names gensyms)))
(for-each increment-occurrence-count! gensyms)
(for-each set-source-name! gensyms names)
(for-each recurse inits)
(recurse-with-bindings body body-bindings)
(if alternate (recurse alternate))))
((<let> names gensyms vals body)
(primitive 'let)
(cond (use-derived-syntax? (primitive 'let*) (primitive 'or)))
(for-each increment-occurrence-count! gensyms)
(for-each set-source-name! gensyms names)
(for-each recurse vals)
(recurse-with-bindings
body (fold vhash-consq bindings (map base-name names) gensyms)))
((<letrec> in-order? names gensyms vals body)
(primitive 'let)
(cond (use-derived-syntax? (primitive 'let*) (primitive 'or)))
(primitive (if in-order? 'letrec* 'letrec))
(for-each increment-occurrence-count! gensyms)
(for-each set-source-name! gensyms names)
(let* ((base-names (map base-name names))
(bindings (fold vhash-consq bindings base-names gensyms)))
(for-each (cut recurse-with-bindings <> bindings) vals)
(recurse-with-bindings body bindings)))
((<fix> names gensyms vals body)
(primitive 'let)
(primitive 'letrec*)
(cond (use-derived-syntax? (primitive 'let*) (primitive 'or)))
(for-each increment-occurrence-count! gensyms)
(for-each set-source-name! gensyms names)
(let* ((base-names (map base-name names))
(bindings (fold vhash-consq bindings base-names gensyms)))
(for-each (cut recurse-with-bindings <> bindings) vals)
(recurse-with-bindings body bindings)))
((<let-values> exp body)
(primitive 'call-with-values)
(recurse exp) (recurse body))
((<prompt> tag body handler)
(primitive 'call-with-prompt)
(recurse tag) (recurse body) (recurse handler))
((<abort> tag args tail)
(primitive 'apply)
(primitive 'abort)
(recurse tag) (for-each recurse args) (recurse tail)))))
(let ()
(define output-name-table (make-hash-table))
(define (set-output-name! s name)
(hashq-set! output-name-table s name))
(define (output-name s)
(if (top-level? s)
(top-level-name s)
(hashq-ref output-name-table s)))
(define sorted-lexical-gensyms
(sort-list lexical-gensyms
(lambda (a b) (> (occurrence-count a)
(occurrence-count b)))))
(for-each (lambda (s)
(set-output-name!
s
(let ((the-conflicts (conflicts s))
(the-source-name (source-name s)))
(define (not-yet-taken? name)
(not (any (lambda (s*)
(and=> (output-name s*)
(cut eq? name <>)))
the-conflicts)))
(if (not-yet-taken? the-source-name)
the-source-name
(let ((prefix (string-append
(symbol->string the-source-name)
"-")))
(let loop ((i 1) (name the-source-name))
(if (not-yet-taken? name)
name
(loop (+ i 1)
(string->symbol
(string-append
prefix
(number->string i)))))))))))
sorted-lexical-gensyms)
(values output-name-table occurrence-count-table)))))
|