Datasets:

License:
File size: 32,734 Bytes
3dcad1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
;;; Guile VM code converters

;; Copyright (C) 2001, 2009, 2012, 2013 Free Software Foundation, Inc.

;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;; 
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;;;; Lesser General Public License for more details.
;;;; 
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

;;; Code:

(define-module (language scheme decompile-tree-il)
  #:use-module (language tree-il)
  #:use-module (srfi srfi-1)
  #:use-module (srfi srfi-26)
  #:use-module (ice-9 receive)
  #:use-module (ice-9 vlist)
  #:use-module (ice-9 match)
  #:use-module (system base syntax)
  #:export (decompile-tree-il))

(define (decompile-tree-il e env opts)
  (apply do-decompile e env opts))

(define* (do-decompile e env
                       #:key
                       (use-derived-syntax? #t)
                       (avoid-lambda? #t)
                       (use-case? #t)
                       (strip-numeric-suffixes? #f)
                       #:allow-other-keys)

  (receive (output-name-table occurrence-count-table)
      (choose-output-names e use-derived-syntax? strip-numeric-suffixes?)

    (define (output-name s)      (hashq-ref output-name-table s))
    (define (occurrence-count s) (hashq-ref occurrence-count-table s))

    (define (const x) (lambda (_) x))
    (define (atom? x) (not (or (pair? x) (vector? x))))

    (define (build-void) '(if #f #f))

    (define (build-begin es)
      (match es
        (() (build-void))
        ((e) e)
        (_ `(begin ,@es))))

    (define (build-lambda-body e)
      (match e
        (('let () body ...) body)
        (('begin es ...) es)
        (_ (list e))))

    (define (build-begin-body e)
      (match e
        (('begin es ...) es)
        (_ (list e))))

    (define (build-define name e)
      (match e
        ((? (const avoid-lambda?)
            ('lambda formals body ...))
         `(define (,name ,@formals) ,@body))
        ((? (const avoid-lambda?)
            ('lambda* formals body ...))
         `(define* (,name ,@formals) ,@body))
        (_ `(define ,name ,e))))

    (define (build-let names vals body)
      (match `(let ,(map list names vals)
                ,@(build-lambda-body body))
        ((_ () e) e)
        ((_ (b) ('let* (bs ...) body ...))
         `(let* (,b ,@bs) ,@body))
        ((? (const use-derived-syntax?)
            (_ (b1) ('let (b2) body ...)))
         `(let* (,b1 ,b2) ,@body))
        (e e)))

    (define (build-letrec in-order? names vals body)
      (match `(,(if in-order? 'letrec* 'letrec)
               ,(map list names vals)
               ,@(build-lambda-body body))
        ((_ () e) e)
        ((_ () body ...) `(let () ,@body))
        ((_ ((name ('lambda (formals ...) body ...)))
            (name args ...))
         (=> failure)
         (if (= (length formals) (length args))
             `(let ,name ,(map list formals args) ,@body)
             (failure)))
        ((? (const avoid-lambda?)
            ('letrec* _ body ...))
         `(let ()
            ,@(map build-define names vals)
            ,@body))
        (e e)))

    (define (build-if test consequent alternate)
      (match alternate
        (('if #f _) `(if ,test ,consequent))
        (_ `(if ,test ,consequent ,alternate))))

    (define (build-and xs)
      (match xs
        (() #t)
        ((x) x)
        (_ `(and ,@xs))))

    (define (build-or xs)
      (match xs
        (() #f)
        ((x) x)
        (_ `(or ,@xs))))

    (define (case-test-var test)
      (match test
        (('memv (? atom? v) ('quote (datums ...)))
         v)
        (('eqv? (? atom? v) ('quote datum))
         v)
        (_ #f)))

    (define (test->datums v test)
      (match (cons v test)
        ((v 'memv v ('quote (xs ...)))
         xs)
        ((v 'eqv? v ('quote x))
         (list x))
        (_ #f)))

    (define (build-else-tail e)
      (match e
        (('if #f _) '())
        (('and xs ... x) `((,(build-and xs) ,@(build-begin-body x))
                           (else #f)))
        (_ `((else ,@(build-begin-body e))))))

    (define (build-cond-else-tail e)
      (match e
        (('cond clauses ...) clauses)
        (_ (build-else-tail e))))

    (define (build-case-else-tail v e)
      (match (cons v e)
        ((v 'case v clauses ...)
         clauses)
        ((v 'if ('memv v ('quote (xs ...))) consequent . alternate*)
         `((,xs ,@(build-begin-body consequent))
           ,@(build-case-else-tail v (build-begin alternate*))))
        ((v 'if ('eqv? v ('quote x)) consequent . alternate*)
         `(((,x) ,@(build-begin-body consequent))
           ,@(build-case-else-tail v (build-begin alternate*))))
        (_ (build-else-tail e))))

    (define (clauses+tail clauses)
      (match clauses
        ((cs ... (and c ('else . _))) (values cs (list c)))
        (_ (values clauses '()))))

    (define (build-cond tests consequents alternate)
      (case (length tests)
        ((0) alternate)
        ((1) (build-if (car tests) (car consequents) alternate))
        (else `(cond ,@(map (lambda (test consequent)
                              `(,test ,@(build-begin-body consequent)))
                            tests consequents)
                     ,@(build-cond-else-tail alternate)))))

    (define (build-cond-or-case tests consequents alternate)
      (if (not use-case?)
          (build-cond tests consequents alternate)
          (let* ((v (and (not (null? tests))
                         (case-test-var (car tests))))
                 (datum-lists (take-while identity
                                          (map (cut test->datums v <>)
                                               tests)))
                 (n (length datum-lists))
                 (tail (build-case-else-tail v (build-cond
                                                (drop tests n)
                                                (drop consequents n)
                                                alternate))))
            (receive (clauses tail) (clauses+tail tail)
              (let ((n (+ n (length clauses)))
                    (datum-lists (append datum-lists
                                         (map car clauses)))
                    (consequents (append consequents
                                         (map build-begin
                                              (map cdr clauses)))))
                (if (< n 2)
                    (build-cond tests consequents alternate)
                    `(case ,v
                       ,@(map cons datum-lists (map build-begin-body
                                                    (take consequents n)))
                       ,@tail)))))))

    (define (recurse e)

      (define (recurse-body e)
        (build-lambda-body (recurse e)))

      (record-case e
        ((<void>)
         (build-void))

        ((<const> exp)
         (if (and (self-evaluating? exp) (not (vector? exp)))
             exp
             `(quote ,exp)))

        ((<seq> head tail)
         (build-begin (cons (recurse head)
                            (build-begin-body
                             (recurse tail)))))

        ((<call> proc args)
         (match `(,(recurse proc) ,@(map recurse args))
           ((('lambda (formals ...) body ...) args ...)
            (=> failure)
            (if (= (length formals) (length args))
                (build-let formals args (build-begin body))
                (failure)))
           (e e)))

        ((<primcall> name args)
         `(,name ,@(map recurse args)))

        ((<primitive-ref> name)
         name)

        ((<lexical-ref> gensym)
         (output-name gensym))

        ((<lexical-set> gensym exp)
         `(set! ,(output-name gensym) ,(recurse exp)))

        ((<module-ref> mod name public?)
         `(,(if public? '@ '@@) ,mod ,name))

        ((<module-set> mod name public? exp)
         `(set! (,(if public? '@ '@@) ,mod ,name) ,(recurse exp)))

        ((<toplevel-ref> name)
         name)

        ((<toplevel-set> name exp)
         `(set! ,name ,(recurse exp)))

        ((<toplevel-define> name exp)
         (build-define name (recurse exp)))

        ((<lambda> meta body)
         (if body
             (let ((body (recurse body))
                   (doc (assq-ref meta 'documentation)))
               (if (not doc)
                   body
                   (match body
                     (('lambda formals body ...)
                      `(lambda ,formals ,doc ,@body))
                     (('lambda* formals body ...)
                      `(lambda* ,formals ,doc ,@body))
                     (('case-lambda (formals body ...) clauses ...)
                      `(case-lambda (,formals ,doc ,@body) ,@clauses))
                     (('case-lambda* (formals body ...) clauses ...)
                      `(case-lambda* (,formals ,doc ,@body) ,@clauses))
                     (e e))))
             '(case-lambda)))

        ((<lambda-case> req opt rest kw inits gensyms body alternate)
         (let ((names (map output-name gensyms)))
           (cond
            ((and (not opt) (not kw) (not alternate))
             `(lambda ,(if rest (apply cons* names) names)
                ,@(recurse-body body)))
            ((and (not opt) (not kw))
             (let ((alt-expansion (recurse alternate))
                   (formals (if rest (apply cons* names) names)))
               (case (car alt-expansion)
                 ((lambda)
                  `(case-lambda (,formals ,@(recurse-body body))
                                ,(cdr alt-expansion)))
                 ((lambda*)
                  `(case-lambda* (,formals ,@(recurse-body body))
                                 ,(cdr alt-expansion)))
                 ((case-lambda)
                  `(case-lambda (,formals ,@(recurse-body body))
                                ,@(cdr alt-expansion)))
                 ((case-lambda*)
                  `(case-lambda* (,formals ,@(recurse-body body))
                                 ,@(cdr alt-expansion))))))
            (else
             (let* ((alt-expansion (and alternate (recurse alternate)))
                    (nreq (length req))
                    (nopt (if opt (length opt) 0))
                    (restargs (if rest (list-ref names (+ nreq nopt)) '()))
                    (reqargs (list-head names nreq))
                    (optargs (if opt
                                 `(#:optional
                                   ,@(map list
                                          (list-head (list-tail names nreq) nopt)
                                          (map recurse
                                               (list-head inits nopt))))
                                 '()))
                    (kwargs (if kw
                                `(#:key
                                  ,@(map list
                                         (map output-name (map caddr (cdr kw)))
                                         (map recurse
                                              (list-tail inits nopt))
                                         (map car (cdr kw)))
                                  ,@(if (car kw)
                                        '(#:allow-other-keys)
                                        '()))
                                '()))
                    (formals `(,@reqargs ,@optargs ,@kwargs . ,restargs)))
               (if (not alt-expansion)
                   `(lambda* ,formals ,@(recurse-body body))
                   (case (car alt-expansion)
                     ((lambda lambda*)
                      `(case-lambda* (,formals ,@(recurse-body body))
                                     ,(cdr alt-expansion)))
                     ((case-lambda case-lambda*)
                      `(case-lambda* (,formals ,@(recurse-body body))
                                     ,@(cdr alt-expansion))))))))))

        ((<conditional> test consequent alternate)
         (define (simplify-test e)
           (match e
             (('if ('eqv? (? atom? v) ('quote a)) #t ('eqv? v ('quote b)))
              `(memv ,v '(,a ,b)))
             (('if ('eqv? (? atom? v) ('quote a)) #t ('memv v ('quote (bs ...))))
              `(memv ,v '(,a ,@bs)))
             (('case (? atom? v)
                ((datum) #t) ...
                ('else ('eqv? v ('quote last-datum))))
              `(memv ,v '(,@datum ,last-datum)))
             (_ e)))
         (match `(if ,(simplify-test (recurse test))
                     ,(recurse consequent)
                     ,@(if (void? alternate) '()
                           (list (recurse alternate))))
           (('if test ('if ('and xs ...) consequent))
            (build-if (build-and (cons test xs))
                      consequent
                      (build-void)))
           ((? (const use-derived-syntax?)
               ('if test1 ('if test2 consequent)))
            (build-if (build-and (list test1 test2))
                      consequent
                      (build-void)))
           (('if (? atom? x) x ('or ys ...))
            (build-or (cons x ys)))
           ((? (const use-derived-syntax?)
               ('if (? atom? x) x y))
            (build-or (list x y)))
           (('if test consequent)
            `(if ,test ,consequent))
           (('if test ('and xs ...) #f)
            (build-and (cons test xs)))
           ((? (const use-derived-syntax?)
               ('if test consequent #f))
            (build-and (list test consequent)))
           ((? (const use-derived-syntax?)
               ('if test1 consequent1
                    ('if test2 consequent2 . alternate*)))
            (build-cond-or-case (list test1 test2)
                                (list consequent1 consequent2)
                                (build-begin alternate*)))
           (('if test consequent ('cond clauses ...))
            `(cond (,test ,@(build-begin-body consequent))
                   ,@clauses))
           (('if ('memv (? atom? v) ('quote (xs ...))) consequent
                 ('case v clauses ...))
            `(case ,v (,xs ,@(build-begin-body consequent))
                   ,@clauses))
           (('if ('eqv? (? atom? v) ('quote x)) consequent
                 ('case v clauses ...))
            `(case ,v ((,x) ,@(build-begin-body consequent))
                   ,@clauses))
           (e e)))

        ((<let> gensyms vals body)
         (match (build-let (map output-name gensyms)
                           (map recurse vals)
                           (recurse body))
           (('let ((v e)) ('or v xs ...))
            (=> failure)
            (if (and (not (null? gensyms))
                     (= 3 (occurrence-count (car gensyms))))
                `(or ,e ,@xs)
                (failure)))
           (('let ((v e)) ('case v clauses ...))
            (=> failure)
            (if (and (not (null? gensyms))
                     ;; FIXME: This fails if any of the 'memv's were
                     ;; optimized into multiple 'eqv?'s, because the
                     ;; occurrence count will be higher than we expect.
                     (= (occurrence-count (car gensyms))
                        (1+ (length (clauses+tail clauses)))))
                `(case ,e ,@clauses)
                (failure)))
           (e e)))

        ((<letrec> in-order? gensyms vals body)
         (build-letrec in-order?
                       (map output-name gensyms)
                       (map recurse vals)
                       (recurse body)))

        ((<fix> gensyms vals body)
         ;; not a typo, we really do translate back to letrec. use letrec* since it
         ;; doesn't matter, and the naive letrec* transformation does not require an
         ;; inner let.
         (build-letrec #t
                       (map output-name gensyms)
                       (map recurse vals)
                       (recurse body)))

        ((<let-values> exp body)
         `(call-with-values (lambda () ,@(recurse-body exp))
            ,(recurse (make-lambda #f '() body))))

        ((<prompt> escape-only? tag body handler)
         `(call-with-prompt
           ,(recurse tag)
           ,(if escape-only?
                `(lambda () ,(recurse body))
                (recurse body))
           ,(recurse handler)))


        ((<abort> tag args tail)
         `(apply abort ,(recurse tag) ,@(map recurse args)
                 ,(recurse tail)))))
    (values (recurse e) env)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Algorithm for choosing better variable names
;; ============================================
;;
;; First we perform an analysis pass, collecting the following
;; information:
;;
;; * For each gensym: how many occurrences will occur in the output?
;;
;; * For each gensym A: which gensyms does A conflict with?  Gensym A
;;   and gensym B conflict if they have the same base name (usually the
;;   same as the source name, but see below), and if giving them the
;;   same name would cause a bad variable reference due to unintentional
;;   variable capture.
;;
;; The occurrence counter is indexed by gensym and is global (within each
;; invocation of the algorithm), implemented using a hash table.  We also
;; keep a global mapping from gensym to source name as provided by the
;; binding construct (we prefer not to trust the source names in the
;; lexical ref or set).
;;
;; As we recurse down into lexical binding forms, we keep track of a
;; mapping from base name to an ordered list of bindings, innermost
;; first.  When we encounter a variable occurrence, we increment the
;; counter, look up the base name (preferring not to trust the 'name' in
;; the lexical ref or set), and then look up the bindings currently in
;; effect for that base name.  Hopefully our gensym will be the first
;; (innermost) binding.  If not, we register a conflict between the
;; referenced gensym and the other bound gensyms with the same base name
;; that shadow the binding we want.  These are simply the gensyms on the
;; binding list that come before our gensym.
;;
;; Top-level bindings are treated specially.  Whenever top-level
;; references are found, they conflict with every lexical binding
;; currently in effect with the same base name.  They are guaranteed to
;; be assigned to their source names.  For purposes of recording
;; conflicts (which are normally keyed on gensyms) top-level identifiers
;; are assigned a pseudo-gensym that is an interned pair of the form
;; (top-level . <name>).  This allows them to be compared using 'eq?'
;; like other gensyms.
;;
;; The base name is normally just the source name.  However, if the
;; source name has a suffix of the form "-N" (where N is a positive
;; integer without leading zeroes), then we strip that suffix (multiple
;; times if necessary) to form the base name.  We must do this because
;; we add suffixes of that form in order to resolve conflicts, and we
;; must ensure that only identifiers with the same base name can
;; possibly conflict with each other.
;;
;; XXX FIXME: Currently, primitives are treated exactly like top-level
;; bindings.  This handles conflicting lexical bindings properly, but
;; does _not_ handle the case where top-level bindings conflict with the
;; needed primitives.
;;
;; Also note that this requires that 'choose-output-names' be kept in
;; sync with 'tree-il->scheme'.  Primitives that are introduced by
;; 'tree-il->scheme' must be anticipated by 'choose-output-name'.
;;
;; We also ensure that lexically-bound identifiers found in operator
;; position will never be assigned one of the standard primitive names.
;; This is needed because 'tree-il->scheme' recognizes primitive names
;; in operator position and assumes that they have the standard
;; bindings.
;;
;;
;; How we assign an output name to each gensym
;; ===========================================
;;
;; We process the gensyms in order of decreasing occurrence count, with
;; each gensym choosing the best output name possible, as long as it
;; isn't the same name as any of the previously-chosen output names of
;; conflicting gensyms.
;;


;;
;; 'choose-output-names' analyzes the top-level form e, chooses good
;; variable names that are as close as possible to the source names,
;; and returns two values:
;;
;;  * a hash table mapping gensym to output name
;;  * a hash table mapping gensym to number of occurrences
;;
(define choose-output-names
  (let ()
    (define primitive?
      ;; This is a list of primitives that 'tree-il->scheme' assumes
      ;; will have the standard bindings when found in operator
      ;; position.
      (let* ((primitives '(if quote @ @@ set! define define*
                              begin let let* letrec letrec*
                              and or cond case
                              lambda lambda* case-lambda case-lambda*
                              apply call-with-values dynamic-wind
                              with-fluids fluid-ref fluid-set!
                              call-with-prompt abort memv eqv?))
             (table (make-hash-table (length primitives))))
        (for-each (cut hashq-set! table <> #t) primitives)
        (lambda (name) (hashq-ref table name))))

    ;; Repeatedly strip suffix of the form "-N", where N is a string
    ;; that could be produced by number->string given a positive
    ;; integer.  In other words, the first digit of N may not be 0.
    (define compute-base-name
      (let ((digits (string->char-set "0123456789")))
        (define (base-name-string str)
          (let ((i (string-skip-right str digits)))
            (if (and i (< (1+ i) (string-length str))
                     (eq? #\- (string-ref str i))
                     (not (eq? #\0 (string-ref str (1+ i)))))
                (base-name-string (substring str 0 i))
                str)))
        (lambda (sym)
          (string->symbol (base-name-string (symbol->string sym))))))

    ;; choose-output-names
    (lambda (e use-derived-syntax? strip-numeric-suffixes?)

      (define lexical-gensyms '())

      (define top-level-intern!
        (let ((table (make-hash-table)))
          (lambda (name)
            (let ((h (hashq-create-handle! table name #f)))
              (or (cdr h) (begin (set-cdr! h (cons 'top-level name))
                                 (cdr h)))))))
      (define (top-level? s) (pair? s))
      (define (top-level-name s) (cdr s))

      (define occurrence-count-table (make-hash-table))
      (define (occurrence-count s) (or (hashq-ref occurrence-count-table s) 0))
      (define (increment-occurrence-count! s)
        (let ((h (hashq-create-handle! occurrence-count-table s 0)))
          (if (zero? (cdr h))
              (set! lexical-gensyms (cons s lexical-gensyms)))
          (set-cdr! h (1+ (cdr h)))))

      (define base-name
        (let ((table (make-hash-table)))
          (lambda (name)
            (let ((h (hashq-create-handle! table name #f)))
              (or (cdr h) (begin (set-cdr! h (compute-base-name name))
                                 (cdr h)))))))

      (define source-name-table (make-hash-table))
      (define (set-source-name! s name)
        (if (not (top-level? s))
            (let ((name (if strip-numeric-suffixes?
                            (base-name name)
                            name)))
              (hashq-set! source-name-table s name))))
      (define (source-name s)
        (if (top-level? s)
            (top-level-name s)
            (hashq-ref source-name-table s)))

      (define conflict-table (make-hash-table))
      (define (conflicts s) (or (hashq-ref conflict-table s) '()))
      (define (add-conflict! a b)
        (define (add! a b)
          (if (not (top-level? a))
              (let ((h (hashq-create-handle! conflict-table a '())))
                (if (not (memq b (cdr h)))
                    (set-cdr! h (cons b (cdr h)))))))
        (add! a b)
        (add! b a))

      (let recurse-with-bindings ((e e) (bindings vlist-null))
        (let recurse ((e e))

          ;; We call this whenever we encounter a top-level ref or set
          (define (top-level name)
            (let ((bname (base-name name)))
              (let ((s (top-level-intern! name))
                    (conflicts (vhash-foldq* cons '() bname bindings)))
                (for-each (cut add-conflict! s <>) conflicts))))

          ;; We call this whenever we encounter a primitive reference.
          ;; We must also call it for every primitive that might be
          ;; inserted by 'tree-il->scheme'.  It is okay to call this
          ;; even when 'tree-il->scheme' will not insert the named
          ;; primitive; the worst that will happen is for a lexical
          ;; variable of the same name to be renamed unnecessarily.
          (define (primitive name) (top-level name))

          ;; We call this whenever we encounter a lexical ref or set.
          (define (lexical s)
            (increment-occurrence-count! s)
            (let ((conflicts
                   (take-while
                    (lambda (s*) (not (eq? s s*)))
                    (reverse! (vhash-foldq* cons
                                            '()
                                            (base-name (source-name s))
                                            bindings)))))
              (for-each (cut add-conflict! s <>) conflicts)))

          (record-case e
            ((<void>)  (primitive 'if)) ; (if #f #f)
            ((<const>) (primitive 'quote))

            ((<call> proc args)
             (if (lexical-ref? proc)
                 (let* ((gensym (lexical-ref-gensym proc))
                        (name (source-name gensym)))
                   ;; If the operator position contains a bare variable
                   ;; reference with the same source name as a standard
                   ;; primitive, we must ensure that it will be given a
                   ;; different name, so that 'tree-il->scheme' will not
                   ;; misinterpret the resulting expression.
                   (if (primitive? name)
                       (add-conflict! gensym (top-level-intern! name)))))
             (recurse proc)
             (for-each recurse args))

            ((<primitive-ref> name) (primitive name))
            ((<primcall> name args) (primitive name) (for-each recurse args))

            ((<lexical-ref> gensym) (lexical gensym))
            ((<lexical-set> gensym exp)
             (primitive 'set!) (lexical gensym) (recurse exp))

            ((<module-ref> public?) (primitive (if public? '@ '@@)))
            ((<module-set> public? exp)
             (primitive 'set!) (primitive (if public? '@ '@@)) (recurse exp))

            ((<toplevel-ref> name) (top-level name))
            ((<toplevel-set> name exp)
             (primitive 'set!) (top-level name) (recurse exp))
            ((<toplevel-define> name exp) (top-level name) (recurse exp))

            ((<conditional> test consequent alternate)
             (cond (use-derived-syntax?
                    (primitive 'and) (primitive 'or)
                    (primitive 'cond) (primitive 'case)
                    (primitive 'else) (primitive '=>)))
             (primitive 'if)
             (recurse test) (recurse consequent) (recurse alternate))

            ((<seq> head tail)
             (primitive 'begin) (recurse head) (recurse tail))

            ((<lambda> body)
             (if body (recurse body) (primitive 'case-lambda)))

            ((<lambda-case> req opt rest kw inits gensyms body alternate)
             (primitive 'lambda)
             (cond ((or opt kw alternate)
                    (primitive 'lambda*)
                    (primitive 'case-lambda)
                    (primitive 'case-lambda*)))
             (primitive 'let)
             (if use-derived-syntax? (primitive 'let*))
             (let* ((names (append req (or opt '()) (if rest (list rest) '())
                                   (map cadr (if kw (cdr kw) '()))))
                    (base-names (map base-name names))
                    (body-bindings
                     (fold vhash-consq bindings base-names gensyms)))
               (for-each increment-occurrence-count! gensyms)
               (for-each set-source-name! gensyms names)
               (for-each recurse inits)
               (recurse-with-bindings body body-bindings)
               (if alternate (recurse alternate))))

            ((<let> names gensyms vals body)
             (primitive 'let)
             (cond (use-derived-syntax? (primitive 'let*) (primitive 'or)))
             (for-each increment-occurrence-count! gensyms)
             (for-each set-source-name! gensyms names)
             (for-each recurse vals)
             (recurse-with-bindings
              body (fold vhash-consq bindings (map base-name names) gensyms)))

            ((<letrec> in-order? names gensyms vals body)
             (primitive 'let)
             (cond (use-derived-syntax? (primitive 'let*) (primitive 'or)))
             (primitive (if in-order? 'letrec* 'letrec))
             (for-each increment-occurrence-count! gensyms)
             (for-each set-source-name! gensyms names)
             (let* ((base-names (map base-name names))
                    (bindings (fold vhash-consq bindings base-names gensyms)))
               (for-each (cut recurse-with-bindings <> bindings) vals)
               (recurse-with-bindings body bindings)))

            ((<fix> names gensyms vals body)
             (primitive 'let)
             (primitive 'letrec*)
             (cond (use-derived-syntax? (primitive 'let*) (primitive 'or)))
             (for-each increment-occurrence-count! gensyms)
             (for-each set-source-name! gensyms names)
             (let* ((base-names (map base-name names))
                    (bindings (fold vhash-consq bindings base-names gensyms)))
               (for-each (cut recurse-with-bindings <> bindings) vals)
               (recurse-with-bindings body bindings)))

            ((<let-values> exp body)
             (primitive 'call-with-values)
             (recurse exp) (recurse body))

            ((<prompt> tag body handler)
             (primitive 'call-with-prompt)
             (recurse tag) (recurse body) (recurse handler))

            ((<abort> tag args tail)
             (primitive 'apply)
             (primitive 'abort)
             (recurse tag) (for-each recurse args) (recurse tail)))))

      (let ()
        (define output-name-table (make-hash-table))
        (define (set-output-name! s name)
          (hashq-set! output-name-table s name))
        (define (output-name s)
          (if (top-level? s)
              (top-level-name s)
              (hashq-ref output-name-table s)))

        (define sorted-lexical-gensyms
          (sort-list lexical-gensyms
                     (lambda (a b) (> (occurrence-count a)
                                      (occurrence-count b)))))

        (for-each (lambda (s)
                    (set-output-name!
                     s
                     (let ((the-conflicts (conflicts s))
                           (the-source-name (source-name s)))
                       (define (not-yet-taken? name)
                         (not (any (lambda (s*)
                                     (and=> (output-name s*)
                                            (cut eq? name <>)))
                                   the-conflicts)))
                       (if (not-yet-taken? the-source-name)
                           the-source-name
                           (let ((prefix (string-append
                                          (symbol->string the-source-name)
                                          "-")))
                             (let loop ((i 1) (name the-source-name))
                               (if (not-yet-taken? name)
                                   name
                                   (loop (+ i 1)
                                         (string->symbol
                                          (string-append
                                           prefix
                                           (number->string i)))))))))))
                  sorted-lexical-gensyms)
        (values output-name-table occurrence-count-table)))))