File size: 34,036 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 |
@c -*-texinfo-*-
@c This is part of the GNU Guile Reference Manual.
@c Copyright (C) 2006, 2010, 2011
@c Free Software Foundation, Inc.
@c See the file guile.texi for copying conditions.
@node PEG Parsing
@section PEG Parsing
Parsing Expression Grammars (PEGs) are a way of specifying formal
languages for text processing. They can be used either for matching
(like regular expressions) or for building recursive descent parsers
(like lex/yacc). Guile uses a superset of PEG syntax that allows more
control over what information is preserved during parsing.
Wikipedia has a clear and concise introduction to PEGs if you want to
familiarize yourself with the syntax:
@url{http://en.wikipedia.org/wiki/Parsing_expression_grammar}.
The @code{(ice-9 peg)} module works by compiling PEGs down to lambda
expressions. These can either be stored in variables at compile-time by
the define macros (@code{define-peg-pattern} and
@code{define-peg-string-patterns}) or calculated explicitly at runtime
with the compile functions (@code{compile-peg-pattern} and
@code{peg-string-compile}).
They can then be used for either parsing (@code{match-pattern}) or searching
(@code{search-for-pattern}). For convenience, @code{search-for-pattern}
also takes pattern literals in case you want to inline a simple search
(people often use regular expressions this way).
The rest of this documentation consists of a syntax reference, an API
reference, and a tutorial.
@menu
* PEG Syntax Reference::
* PEG API Reference::
* PEG Tutorial::
* PEG Internals::
@end menu
@node PEG Syntax Reference
@subsection PEG Syntax Reference
@subsubheading Normal PEG Syntax:
@deftp {PEG Pattern} sequence a b
Parses @var{a}. If this succeeds, continues to parse @var{b} from the
end of the text parsed as @var{a}. Succeeds if both @var{a} and
@var{b} succeed.
@code{"a b"}
@code{(and a b)}
@end deftp
@deftp {PEG Pattern} {ordered choice} a b
Parses @var{a}. If this fails, backtracks and parses @var{b}.
Succeeds if either @var{a} or @var{b} succeeds.
@code{"a/b"}
@code{(or a b)}
@end deftp
@deftp {PEG Pattern} {zero or more} a
Parses @var{a} as many times in a row as it can, starting each @var{a}
at the end of the text parsed by the previous @var{a}. Always
succeeds.
@code{"a*"}
@code{(* a)}
@end deftp
@deftp {PEG Pattern} {one or more} a
Parses @var{a} as many times in a row as it can, starting each @var{a}
at the end of the text parsed by the previous @var{a}. Succeeds if at
least one @var{a} was parsed.
@code{"a+"}
@code{(+ a)}
@end deftp
@deftp {PEG Pattern} optional a
Tries to parse @var{a}. Succeeds if @var{a} succeeds.
@code{"a?"}
@code{(? a)}
@end deftp
@deftp {PEG Pattern} {followed by} a
Makes sure it is possible to parse @var{a}, but does not actually parse
it. Succeeds if @var{a} would succeed.
@code{"&a"}
@code{(followed-by a)}
@end deftp
@deftp {PEG Pattern} {not followed by} a
Makes sure it is impossible to parse @var{a}, but does not actually
parse it. Succeeds if @var{a} would fail.
@code{"!a"}
@code{(not-followed-by a)}
@end deftp
@deftp {PEG Pattern} {string literal} ``abc''
Parses the string @var{"abc"}. Succeeds if that parsing succeeds.
@code{"'abc'"}
@code{"abc"}
@end deftp
@deftp {PEG Pattern} {any character}
Parses any single character. Succeeds unless there is no more text to
be parsed.
@code{"."}
@code{peg-any}
@end deftp
@deftp {PEG Pattern} {character class} a b
Alternative syntax for ``Ordered Choice @var{a} @var{b}'' if @var{a} and
@var{b} are characters.
@code{"[ab]"}
@code{(or "a" "b")}
@end deftp
@deftp {PEG Pattern} {range of characters} a z
Parses any character falling between @var{a} and @var{z}.
@code{"[a-z]"}
@code{(range #\a #\z)}
@end deftp
Example:
@example
"(a !b / c &d*) 'e'+"
@end example
Would be:
@lisp
(and
(or
(and a (not-followed-by b))
(and c (followed-by (* d))))
(+ "e"))
@end lisp
@subsubheading Extended Syntax
There is some extra syntax for S-expressions.
@deftp {PEG Pattern} ignore a
Ignore the text matching @var{a}
@end deftp
@deftp {PEG Pattern} capture a
Capture the text matching @var{a}.
@end deftp
@deftp {PEG Pattern} peg a
Embed the PEG pattern @var{a} using string syntax.
@end deftp
Example:
@example
"!a / 'b'"
@end example
Is equivalent to
@lisp
(or (peg "!a") "b")
@end lisp
and
@lisp
(or (not-followed-by a) "b")
@end lisp
@node PEG API Reference
@subsection PEG API Reference
@subsubheading Define Macros
The most straightforward way to define a PEG is by using one of the
define macros (both of these macroexpand into @code{define}
expressions). These macros bind parsing functions to variables. These
parsing functions may be invoked by @code{match-pattern} or
@code{search-for-pattern}, which return a PEG match record. Raw data can be
retrieved from this record with the PEG match deconstructor functions.
More complicated (and perhaps enlightening) examples can be found in the
tutorial.
@deffn {Scheme Macro} define-peg-string-patterns peg-string
Defines all the nonterminals in the PEG @var{peg-string}. More
precisely, @code{define-peg-string-patterns} takes a superset of PEGs. A normal PEG
has a @code{<-} between the nonterminal and the pattern.
@code{define-peg-string-patterns} uses this symbol to determine what information it
should propagate up the parse tree. The normal @code{<-} propagates the
matched text up the parse tree, @code{<--} propagates the matched text
up the parse tree tagged with the name of the nonterminal, and @code{<}
discards that matched text and propagates nothing up the parse tree.
Also, nonterminals may consist of any alphanumeric character or a ``-''
character (in normal PEGs nonterminals can only be alphabetic).
For example, if we:
@lisp
(define-peg-string-patterns
"as <- 'a'+
bs <- 'b'+
as-or-bs <- as/bs")
(define-peg-string-patterns
"as-tag <-- 'a'+
bs-tag <-- 'b'+
as-or-bs-tag <-- as-tag/bs-tag")
@end lisp
Then:
@lisp
(match-pattern as-or-bs "aabbcc") @result{}
#<peg start: 0 end: 2 string: aabbcc tree: aa>
(match-pattern as-or-bs-tag "aabbcc") @result{}
#<peg start: 0 end: 2 string: aabbcc tree: (as-or-bs-tag (as-tag aa))>
@end lisp
Note that in doing this, we have bound 6 variables at the toplevel
(@var{as}, @var{bs}, @var{as-or-bs}, @var{as-tag}, @var{bs-tag}, and
@var{as-or-bs-tag}).
@end deffn
@deffn {Scheme Macro} define-peg-pattern name capture-type peg-sexp
Defines a single nonterminal @var{name}. @var{capture-type} determines
how much information is passed up the parse tree. @var{peg-sexp} is a
PEG in S-expression form.
Possible values for capture-type:
@table @code
@item all
passes the matched text up the parse tree tagged with the name of the
nonterminal.
@item body
passes the matched text up the parse tree.
@item none
passes nothing up the parse tree.
@end table
For Example, if we:
@lisp
(define-peg-pattern as body (+ "a"))
(define-peg-pattern bs body (+ "b"))
(define-peg-pattern as-or-bs body (or as bs))
(define-peg-pattern as-tag all (+ "a"))
(define-peg-pattern bs-tag all (+ "b"))
(define-peg-pattern as-or-bs-tag all (or as-tag bs-tag))
@end lisp
Then:
@lisp
(match-pattern as-or-bs "aabbcc") @result{}
#<peg start: 0 end: 2 string: aabbcc tree: aa>
(match-pattern as-or-bs-tag "aabbcc") @result{}
#<peg start: 0 end: 2 string: aabbcc tree: (as-or-bs-tag (as-tag aa))>
@end lisp
Note that in doing this, we have bound 6 variables at the toplevel
(@var{as}, @var{bs}, @var{as-or-bs}, @var{as-tag}, @var{bs-tag}, and
@var{as-or-bs-tag}).
@end deffn
@subsubheading Compile Functions
It is sometimes useful to be able to compile anonymous PEG patterns at
runtime. These functions let you do that using either syntax.
@deffn {Scheme Procedure} peg-string-compile peg-string capture-type
Compiles the PEG pattern in @var{peg-string} propagating according to
@var{capture-type} (capture-type can be any of the values from
@code{define-peg-pattern}).
@end deffn
@deffn {Scheme Procedure} compile-peg-pattern peg-sexp capture-type
Compiles the PEG pattern in @var{peg-sexp} propagating according to
@var{capture-type} (capture-type can be any of the values from
@code{define-peg-pattern}).
@end deffn
The functions return syntax objects, which can be useful if you want to
use them in macros. If all you want is to define a new nonterminal, you
can do the following:
@lisp
(define exp '(+ "a"))
(define as (compile (compile-peg-pattern exp 'body)))
@end lisp
You can use this nonterminal with all of the regular PEG functions:
@lisp
(match-pattern as "aaaaa") @result{}
#<peg start: 0 end: 5 string: aaaaa tree: aaaaa>
@end lisp
@subsubheading Parsing & Matching Functions
For our purposes, ``parsing'' means parsing a string into a tree
starting from the first character, while ``matching'' means searching
through the string for a substring. In practice, the only difference
between the two functions is that @code{match-pattern} gives up if it can't
find a valid substring starting at index 0 and @code{search-for-pattern} keeps
looking. They are both equally capable of ``parsing'' and ``matching''
given those constraints.
@deffn {Scheme Procedure} match-pattern nonterm string
Parses @var{string} using the PEG stored in @var{nonterm}. If no match
was found, @code{match-pattern} returns false. If a match was found, a PEG
match record is returned.
The @code{capture-type} argument to @code{define-peg-pattern} allows you to
choose what information to hold on to while parsing. The options are:
@table @code
@item all
tag the matched text with the nonterminal
@item body
just the matched text
@item none
nothing
@end table
@lisp
(define-peg-pattern as all (+ "a"))
(match-pattern as "aabbcc") @result{}
#<peg start: 0 end: 2 string: aabbcc tree: (as aa)>
(define-peg-pattern as body (+ "a"))
(match-pattern as "aabbcc") @result{}
#<peg start: 0 end: 2 string: aabbcc tree: aa>
(define-peg-pattern as none (+ "a"))
(match-pattern as "aabbcc") @result{}
#<peg start: 0 end: 2 string: aabbcc tree: ()>
(define-peg-pattern bs body (+ "b"))
(match-pattern bs "aabbcc") @result{}
#f
@end lisp
@end deffn
@deffn {Scheme Macro} search-for-pattern nonterm-or-peg string
Searches through @var{string} looking for a matching subexpression.
@var{nonterm-or-peg} can either be a nonterminal or a literal PEG
pattern. When a literal PEG pattern is provided, @code{search-for-pattern} works
very similarly to the regular expression searches many hackers are used
to. If no match was found, @code{search-for-pattern} returns false. If a match
was found, a PEG match record is returned.
@lisp
(define-peg-pattern as body (+ "a"))
(search-for-pattern as "aabbcc") @result{}
#<peg start: 0 end: 2 string: aabbcc tree: aa>
(search-for-pattern (+ "a") "aabbcc") @result{}
#<peg start: 0 end: 2 string: aabbcc tree: aa>
(search-for-pattern "'a'+" "aabbcc") @result{}
#<peg start: 0 end: 2 string: aabbcc tree: aa>
(define-peg-pattern as all (+ "a"))
(search-for-pattern as "aabbcc") @result{}
#<peg start: 0 end: 2 string: aabbcc tree: (as aa)>
(define-peg-pattern bs body (+ "b"))
(search-for-pattern bs "aabbcc") @result{}
#<peg start: 2 end: 4 string: aabbcc tree: bb>
(search-for-pattern (+ "b") "aabbcc") @result{}
#<peg start: 2 end: 4 string: aabbcc tree: bb>
(search-for-pattern "'b'+" "aabbcc") @result{}
#<peg start: 2 end: 4 string: aabbcc tree: bb>
(define-peg-pattern zs body (+ "z"))
(search-for-pattern zs "aabbcc") @result{}
#f
(search-for-pattern (+ "z") "aabbcc") @result{}
#f
(search-for-pattern "'z'+" "aabbcc") @result{}
#f
@end lisp
@end deffn
@subsubheading PEG Match Records
The @code{match-pattern} and @code{search-for-pattern} functions both return PEG
match records. Actual information can be extracted from these with the
following functions.
@deffn {Scheme Procedure} peg:string match-record
Returns the original string that was parsed in the creation of
@code{match-record}.
@end deffn
@deffn {Scheme Procedure} peg:start match-record
Returns the index of the first parsed character in the original string
(from @code{peg:string}). If this is the same as @code{peg:end},
nothing was parsed.
@end deffn
@deffn {Scheme Procedure} peg:end match-record
Returns one more than the index of the last parsed character in the
original string (from @code{peg:string}). If this is the same as
@code{peg:start}, nothing was parsed.
@end deffn
@deffn {Scheme Procedure} peg:substring match-record
Returns the substring parsed by @code{match-record}. This is equivalent to
@code{(substring (peg:string match-record) (peg:start match-record) (peg:end
match-record))}.
@end deffn
@deffn {Scheme Procedure} peg:tree match-record
Returns the tree parsed by @code{match-record}.
@end deffn
@deffn {Scheme Procedure} peg-record? match-record
Returns true if @code{match-record} is a PEG match record, or false
otherwise.
@end deffn
Example:
@lisp
(define-peg-pattern bs all (peg "'b'+"))
(search-for-pattern bs "aabbcc") @result{}
#<peg start: 2 end: 4 string: aabbcc tree: (bs bb)>
(let ((pm (search-for-pattern bs "aabbcc")))
`((string ,(peg:string pm))
(start ,(peg:start pm))
(end ,(peg:end pm))
(substring ,(peg:substring pm))
(tree ,(peg:tree pm))
(record? ,(peg-record? pm)))) @result{}
((string "aabbcc")
(start 2)
(end 4)
(substring "bb")
(tree (bs "bb"))
(record? #t))
@end lisp
@subsubheading Miscellaneous
@deffn {Scheme Procedure} context-flatten tst lst
Takes a predicate @var{tst} and a list @var{lst}. Flattens @var{lst}
until all elements are either atoms or satisfy @var{tst}. If @var{lst}
itself satisfies @var{tst}, @code{(list lst)} is returned (this is a
flat list whose only element satisfies @var{tst}).
@lisp
(context-flatten (lambda (x) (and (number? (car x)) (= (car x) 1))) '(2 2 (1 1 (2 2)) (2 2 (1 1)))) @result{}
(2 2 (1 1 (2 2)) 2 2 (1 1))
(context-flatten (lambda (x) (and (number? (car x)) (= (car x) 1))) '(1 1 (1 1 (2 2)) (2 2 (1 1)))) @result{}
((1 1 (1 1 (2 2)) (2 2 (1 1))))
@end lisp
If you're wondering why this is here, take a look at the tutorial.
@end deffn
@deffn {Scheme Procedure} keyword-flatten terms lst
A less general form of @code{context-flatten}. Takes a list of terminal
atoms @code{terms} and flattens @var{lst} until all elements are either
atoms, or lists which have an atom from @code{terms} as their first
element.
@lisp
(keyword-flatten '(a b) '(c a b (a c) (b c) (c (b a) (c a)))) @result{}
(c a b (a c) (b c) c (b a) c a)
@end lisp
If you're wondering why this is here, take a look at the tutorial.
@end deffn
@node PEG Tutorial
@subsection PEG Tutorial
@subsubheading Parsing /etc/passwd
This example will show how to parse /etc/passwd using PEGs.
First we define an example /etc/passwd file:
@lisp
(define *etc-passwd*
"root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
nobody:x:65534:65534:nobody:/nonexistent:/bin/sh
messagebus:x:103:107::/var/run/dbus:/bin/false
")
@end lisp
As a first pass at this, we might want to have all the entries in
/etc/passwd in a list.
Doing this with string-based PEG syntax would look like this:
@lisp
(define-peg-string-patterns
"passwd <- entry* !.
entry <-- (! NL .)* NL*
NL < '\n'")
@end lisp
A @code{passwd} file is 0 or more entries (@code{entry*}) until the end
of the file (@code{!.} (@code{.} is any character, so @code{!.} means
``not anything'')). We want to capture the data in the nonterminal
@code{passwd}, but not tag it with the name, so we use @code{<-}.
An entry is a series of 0 or more characters that aren't newlines
(@code{(! NL .)*}) followed by 0 or more newlines (@code{NL*}). We want
to tag all the entries with @code{entry}, so we use @code{<--}.
A newline is just a literal newline (@code{'\n'}). We don't want a
bunch of newlines cluttering up the output, so we use @code{<} to throw
away the captured data.
Here is the same PEG defined using S-expressions:
@lisp
(define-peg-pattern passwd body (and (* entry) (not-followed-by peg-any)))
(define-peg-pattern entry all (and (* (and (not-followed-by NL) peg-any))
(* NL)))
(define-peg-pattern NL none "\n")
@end lisp
Obviously this is much more verbose. On the other hand, it's more
explicit, and thus easier to build automatically. However, there are
some tricks that make S-expressions easier to use in some cases. One is
the @code{ignore} keyword; the string syntax has no way to say ``throw
away this text'' except breaking it out into a separate nonterminal.
For instance, to throw away the newlines we had to define @code{NL}. In
the S-expression syntax, we could have simply written @code{(ignore
"\n")}. Also, for the cases where string syntax is really much cleaner,
the @code{peg} keyword can be used to embed string syntax in
S-expression syntax. For instance, we could have written:
@lisp
(define-peg-pattern passwd body (peg "entry* !."))
@end lisp
However we define it, parsing @code{*etc-passwd*} with the @code{passwd}
nonterminal yields the same results:
@lisp
(peg:tree (match-pattern passwd *etc-passwd*)) @result{}
((entry "root:x:0:0:root:/root:/bin/bash")
(entry "daemon:x:1:1:daemon:/usr/sbin:/bin/sh")
(entry "bin:x:2:2:bin:/bin:/bin/sh")
(entry "sys:x:3:3:sys:/dev:/bin/sh")
(entry "nobody:x:65534:65534:nobody:/nonexistent:/bin/sh")
(entry "messagebus:x:103:107::/var/run/dbus:/bin/false"))
@end lisp
However, here is something to be wary of:
@lisp
(peg:tree (match-pattern passwd "one entry")) @result{}
(entry "one entry")
@end lisp
By default, the parse trees generated by PEGs are compressed as much as
possible without losing information. It may not look like this is what
you want at first, but uncompressed parse trees are an enormous headache
(there's no easy way to predict how deep particular lists will nest,
there are empty lists littered everywhere, etc. etc.). One side-effect
of this, however, is that sometimes the compressor is too aggressive.
No information is discarded when @code{((entry "one entry"))} is
compressed to @code{(entry "one entry")}, but in this particular case it
probably isn't what we want.
There are two functions for easily dealing with this:
@code{keyword-flatten} and @code{context-flatten}. The
@code{keyword-flatten} function takes a list of keywords and a list to
flatten, then tries to coerce the list such that the first element of
all sublists is one of the keywords. The @code{context-flatten}
function is similar, but instead of a list of keywords it takes a
predicate that should indicate whether a given sublist is good enough
(refer to the API reference for more details).
What we want here is @code{keyword-flatten}.
@lisp
(keyword-flatten '(entry) (peg:tree (match-pattern passwd *etc-passwd*))) @result{}
((entry "root:x:0:0:root:/root:/bin/bash")
(entry "daemon:x:1:1:daemon:/usr/sbin:/bin/sh")
(entry "bin:x:2:2:bin:/bin:/bin/sh")
(entry "sys:x:3:3:sys:/dev:/bin/sh")
(entry "nobody:x:65534:65534:nobody:/nonexistent:/bin/sh")
(entry "messagebus:x:103:107::/var/run/dbus:/bin/false"))
(keyword-flatten '(entry) (peg:tree (match-pattern passwd "one entry"))) @result{}
((entry "one entry"))
@end lisp
Of course, this is a somewhat contrived example. In practice we would
probably just tag the @code{passwd} nonterminal to remove the ambiguity
(using either the @code{all} keyword for S-expressions or the @code{<--}
symbol for strings)..
@lisp
(define-peg-pattern tag-passwd all (peg "entry* !."))
(peg:tree (match-pattern tag-passwd *etc-passwd*)) @result{}
(tag-passwd
(entry "root:x:0:0:root:/root:/bin/bash")
(entry "daemon:x:1:1:daemon:/usr/sbin:/bin/sh")
(entry "bin:x:2:2:bin:/bin:/bin/sh")
(entry "sys:x:3:3:sys:/dev:/bin/sh")
(entry "nobody:x:65534:65534:nobody:/nonexistent:/bin/sh")
(entry "messagebus:x:103:107::/var/run/dbus:/bin/false"))
(peg:tree (match-pattern tag-passwd "one entry"))
(tag-passwd
(entry "one entry"))
@end lisp
If you're ever uncertain about the potential results of parsing
something, remember the two absolute rules:
@enumerate
@item
No parsing information will ever be discarded.
@item
There will never be any lists with fewer than 2 elements.
@end enumerate
For the purposes of (1), "parsing information" means things tagged with
the @code{any} keyword or the @code{<--} symbol. Plain strings will be
concatenated.
Let's extend this example a bit more and actually pull some useful
information out of the passwd file:
@lisp
(define-peg-string-patterns
"passwd <-- entry* !.
entry <-- login C pass C uid C gid C nameORcomment C homedir C shell NL*
login <-- text
pass <-- text
uid <-- [0-9]*
gid <-- [0-9]*
nameORcomment <-- text
homedir <-- path
shell <-- path
path <-- (SLASH pathELEMENT)*
pathELEMENT <-- (!NL !C !'/' .)*
text <- (!NL !C .)*
C < ':'
NL < '\n'
SLASH < '/'")
@end lisp
This produces rather pretty parse trees:
@lisp
(passwd
(entry (login "root")
(pass "x")
(uid "0")
(gid "0")
(nameORcomment "root")
(homedir (path (pathELEMENT "root")))
(shell (path (pathELEMENT "bin") (pathELEMENT "bash"))))
(entry (login "daemon")
(pass "x")
(uid "1")
(gid "1")
(nameORcomment "daemon")
(homedir
(path (pathELEMENT "usr") (pathELEMENT "sbin")))
(shell (path (pathELEMENT "bin") (pathELEMENT "sh"))))
(entry (login "bin")
(pass "x")
(uid "2")
(gid "2")
(nameORcomment "bin")
(homedir (path (pathELEMENT "bin")))
(shell (path (pathELEMENT "bin") (pathELEMENT "sh"))))
(entry (login "sys")
(pass "x")
(uid "3")
(gid "3")
(nameORcomment "sys")
(homedir (path (pathELEMENT "dev")))
(shell (path (pathELEMENT "bin") (pathELEMENT "sh"))))
(entry (login "nobody")
(pass "x")
(uid "65534")
(gid "65534")
(nameORcomment "nobody")
(homedir (path (pathELEMENT "nonexistent")))
(shell (path (pathELEMENT "bin") (pathELEMENT "sh"))))
(entry (login "messagebus")
(pass "x")
(uid "103")
(gid "107")
nameORcomment
(homedir
(path (pathELEMENT "var")
(pathELEMENT "run")
(pathELEMENT "dbus")))
(shell (path (pathELEMENT "bin") (pathELEMENT "false")))))
@end lisp
Notice that when there's no entry in a field (e.g. @code{nameORcomment}
for messagebus) the symbol is inserted. This is the ``don't throw away
any information'' rule---we successfully matched a @code{nameORcomment}
of 0 characters (since we used @code{*} when defining it). This is
usually what you want, because it allows you to e.g. use @code{list-ref}
to pull out elements (since they all have known offsets).
If you'd prefer not to have symbols for empty matches, you can replace
the @code{*} with a @code{+} and add a @code{?} after the
@code{nameORcomment} in @code{entry}. Then it will try to parse 1 or
more characters, fail (inserting nothing into the parse tree), but
continue because it didn't have to match the nameORcomment to continue.
@subsubheading Embedding Arithmetic Expressions
We can parse simple mathematical expressions with the following PEG:
@lisp
(define-peg-string-patterns
"expr <- sum
sum <-- (product ('+' / '-') sum) / product
product <-- (value ('*' / '/') product) / value
value <-- number / '(' expr ')'
number <-- [0-9]+")
@end lisp
Then:
@lisp
(peg:tree (match-pattern expr "1+1/2*3+(1+1)/2")) @result{}
(sum (product (value (number "1")))
"+"
(sum (product
(value (number "1"))
"/"
(product
(value (number "2"))
"*"
(product (value (number "3")))))
"+"
(sum (product
(value "("
(sum (product (value (number "1")))
"+"
(sum (product (value (number "1")))))
")")
"/"
(product (value (number "2")))))))
@end lisp
There is very little wasted effort in this PEG. The @code{number}
nonterminal has to be tagged because otherwise the numbers might run
together with the arithmetic expressions during the string concatenation
stage of parse-tree compression (the parser will see ``1'' followed by
``/'' and decide to call it ``1/''). When in doubt, tag.
It is very easy to turn these parse trees into lisp expressions:
@lisp
(define (parse-sum sum left . rest)
(if (null? rest)
(apply parse-product left)
(list (string->symbol (car rest))
(apply parse-product left)
(apply parse-sum (cadr rest)))))
(define (parse-product product left . rest)
(if (null? rest)
(apply parse-value left)
(list (string->symbol (car rest))
(apply parse-value left)
(apply parse-product (cadr rest)))))
(define (parse-value value first . rest)
(if (null? rest)
(string->number (cadr first))
(apply parse-sum (car rest))))
(define parse-expr parse-sum)
@end lisp
(Notice all these functions look very similar; for a more complicated
PEG, it would be worth abstracting.)
Then:
@lisp
(apply parse-expr (peg:tree (match-pattern expr "1+1/2*3+(1+1)/2"))) @result{}
(+ 1 (+ (/ 1 (* 2 3)) (/ (+ 1 1) 2)))
@end lisp
But wait! The associativity is wrong! Where it says @code{(/ 1 (* 2
3))}, it should say @code{(* (/ 1 2) 3)}.
It's tempting to try replacing e.g. @code{"sum <-- (product ('+' / '-')
sum) / product"} with @code{"sum <-- (sum ('+' / '-') product) /
product"}, but this is a Bad Idea. PEGs don't support left recursion.
To see why, imagine what the parser will do here. When it tries to
parse @code{sum}, it first has to try and parse @code{sum}. But to do
that, it first has to try and parse @code{sum}. This will continue
until the stack gets blown off.
So how does one parse left-associative binary operators with PEGs?
Honestly, this is one of their major shortcomings. There's no
general-purpose way of doing this, but here the repetition operators are
a good choice:
@lisp
(use-modules (srfi srfi-1))
(define-peg-string-patterns
"expr <- sum
sum <-- (product ('+' / '-'))* product
product <-- (value ('*' / '/'))* value
value <-- number / '(' expr ')'
number <-- [0-9]+")
;; take a deep breath...
(define (make-left-parser next-func)
(lambda (sum first . rest) ;; general form, comments below assume
;; that we're dealing with a sum expression
(if (null? rest) ;; form (sum (product ...))
(apply next-func first)
(if (string? (cadr first));; form (sum ((product ...) "+") (product ...))
(list (string->symbol (cadr first))
(apply next-func (car first))
(apply next-func (car rest)))
;; form (sum (((product ...) "+") ((product ...) "+")) (product ...))
(car
(reduce ;; walk through the list and build a left-associative tree
(lambda (l r)
(list (list (cadr r) (car r) (apply next-func (car l)))
(string->symbol (cadr l))))
'ignore
(append ;; make a list of all the products
;; the first one should be pre-parsed
(list (list (apply next-func (caar first))
(string->symbol (cadar first))))
(cdr first)
;; the last one has to be added in
(list (append rest '("done"))))))))))
(define (parse-value value first . rest)
(if (null? rest)
(string->number (cadr first))
(apply parse-sum (car rest))))
(define parse-product (make-left-parser parse-value))
(define parse-sum (make-left-parser parse-product))
(define parse-expr parse-sum)
@end lisp
Then:
@lisp
(apply parse-expr (peg:tree (match-pattern expr "1+1/2*3+(1+1)/2"))) @result{}
(+ (+ 1 (* (/ 1 2) 3)) (/ (+ 1 1) 2))
@end lisp
As you can see, this is much uglier (it could be made prettier by using
@code{context-flatten}, but the way it's written above makes it clear
how we deal with the three ways the zero-or-more @code{*} expression can
parse). Fortunately, most of the time we can get away with only using
right-associativity.
@subsubheading Simplified Functions
For a more tantalizing example, consider the following grammar that
parses (highly) simplified C functions:
@lisp
(define-peg-string-patterns
"cfunc <-- cSP ctype cSP cname cSP cargs cLB cSP cbody cRB
ctype <-- cidentifier
cname <-- cidentifier
cargs <-- cLP (! (cSP cRP) carg cSP (cCOMMA / cRP) cSP)* cSP
carg <-- cSP ctype cSP cname
cbody <-- cstatement *
cidentifier <- [a-zA-z][a-zA-Z0-9_]*
cstatement <-- (!';'.)*cSC cSP
cSC < ';'
cCOMMA < ','
cLP < '('
cRP < ')'
cLB < '@{'
cRB < '@}'
cSP < [ \t\n]*")
@end lisp
Then:
@lisp
(match-pattern cfunc "int square(int a) @{ return a*a;@}") @result{}
(32
(cfunc (ctype "int")
(cname "square")
(cargs (carg (ctype "int") (cname "a")))
(cbody (cstatement "return a*a"))))
@end lisp
And:
@lisp
(match-pattern cfunc "int mod(int a, int b) @{ int c = a/b;return a-b*c; @}") @result{}
(52
(cfunc (ctype "int")
(cname "mod")
(cargs (carg (ctype "int") (cname "a"))
(carg (ctype "int") (cname "b")))
(cbody (cstatement "int c = a/b")
(cstatement "return a- b*c"))))
@end lisp
By wrapping all the @code{carg} nonterminals in a @code{cargs}
nonterminal, we were able to remove any ambiguity in the parsing
structure and avoid having to call @code{context-flatten} on the output
of @code{match-pattern}. We used the same trick with the @code{cstatement}
nonterminals, wrapping them in a @code{cbody} nonterminal.
The whitespace nonterminal @code{cSP} used here is a (very) useful
instantiation of a common pattern for matching syntactically irrelevant
information. Since it's tagged with @code{<} and ends with @code{*} it
won't clutter up the parse trees (all the empty lists will be discarded
during the compression step) and it will never cause parsing to fail.
@node PEG Internals
@subsection PEG Internals
A PEG parser takes a string as input and attempts to parse it as a given
nonterminal. The key idea of the PEG implementation is that every
nonterminal is just a function that takes a string as an argument and
attempts to parse that string as its nonterminal. The functions always
start from the beginning, but a parse is considered successful if there
is material left over at the end.
This makes it easy to model different PEG parsing operations. For
instance, consider the PEG grammar @code{"ab"}, which could also be
written @code{(and "a" "b")}. It matches the string ``ab''. Here's how
that might be implemented in the PEG style:
@lisp
(define (match-and-a-b str)
(match-a str)
(match-b str))
@end lisp
As you can see, the use of functions provides an easy way to model
sequencing. In a similar way, one could model @code{(or a b)} with
something like the following:
@lisp
(define (match-or-a-b str)
(or (match-a str) (match-b str)))
@end lisp
Here the semantics of a PEG @code{or} expression map naturally onto
Scheme's @code{or} operator. This function will attempt to run
@code{(match-a str)}, and return its result if it succeeds. Otherwise it
will run @code{(match-b str)}.
Of course, the code above wouldn't quite work. We need some way for the
parsing functions to communicate. The actual interface used is below.
@subsubheading Parsing Function Interface
A parsing function takes three arguments - a string, the length of that
string, and the position in that string it should start parsing at. In
effect, the parsing functions pass around substrings in pieces - the
first argument is a buffer of characters, and the second two give a
range within that buffer that the parsing function should look at.
Parsing functions return either #f, if they failed to match their
nonterminal, or a list whose first element must be an integer
representing the final position in the string they matched and whose cdr
can be any other data the function wishes to return, or '() if it
doesn't have any more data.
The one caveat is that if the extra data it returns is a list, any
adjacent strings in that list will be appended by @code{match-pattern}. For
instance, if a parsing function returns @code{(13 ("a" "b" "c"))},
@code{match-pattern} will take @code{(13 ("abc"))} as its value.
For example, here is a function to match ``ab'' using the actual
interface.
@lisp
(define (match-a-b str len pos)
(and (<= (+ pos 2) len)
(string= str "ab" pos (+ pos 2))
(list (+ pos 2) '()))) ; we return no extra information
@end lisp
The above function can be used to match a string by running
@code{(match-pattern match-a-b "ab")}.
@subsubheading Code Generators and Extensible Syntax
PEG expressions, such as those in a @code{define-peg-pattern} form, are
interpreted internally in two steps.
First, any string PEG is expanded into an s-expression PEG by the code
in the @code{(ice-9 peg string-peg)} module.
Then, the s-expression PEG that results is compiled into a parsing
function by the @code{(ice-9 peg codegen)} module. In particular, the
function @code{compile-peg-pattern} is called on the s-expression. It then
decides what to do based on the form it is passed.
The PEG syntax can be expanded by providing @code{compile-peg-pattern} more
options for what to do with its forms. The extended syntax will be
associated with a symbol, for instance @code{my-parsing-form}, and will
be called on all PEG expressions of the form
@lisp
(my-parsing-form ...)
@end lisp
The parsing function should take two arguments. The first will be a
syntax object containing a list with all of the arguments to the form
(but not the form's name), and the second will be the
@code{capture-type} argument that is passed to @code{define-peg-pattern}.
New functions can be registered by calling @code{(add-peg-compiler!
symbol function)}, where @code{symbol} is the symbol that will indicate
a form of this type and @code{function} is the code generating function
described above. The function @code{add-peg-compiler!} is exported from
the @code{(ice-9 peg codegen)} module.
|