File size: 11,583 Bytes
a239d5a e594a17 9c93bb1 7c0e406 a239d5a 4411402 a239d5a 4411402 a239d5a 4411402 75fceb6 a239d5a 1eecf83 a239d5a 4411402 a239d5a 4411402 a239d5a 4411402 75fceb6 4411402 75fceb6 4411402 75fceb6 4411402 75fceb6 4411402 75fceb6 4411402 75fceb6 a239d5a 75fceb6 0b720c8 a239d5a 48be34f a239d5a 75fceb6 4411402 a239d5a 1042eff 931cf65 7dd0ea4 4411402 a239d5a 1042eff 4411402 9d61f37 4411402 a239d5a 472576b a239d5a 31583b5 a239d5a 27520da a239d5a 4411402 75fceb6 a239d5a 9c93bb1 75fceb6 a239d5a 48be34f a239d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# coding=utf-8
# Copyright 2023 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" AfriSpeech-200 Dataset"""
# Adapted from
# https://huggingface.co/datasets/vivos/blob/main/vivos.py
# https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/blob/main/common_voice_11_0.py
# https://huggingface.co/datasets/PolyAI/minds14/blob/main/minds14.py
# https://huggingface.co/docs/datasets/share#clone-the-repository
import csv
import os
import json
import datasets
from datasets.utils.py_utils import size_str
from tqdm import tqdm
from .accent_stats import ACCENT_STATS
_CITATION = """ TBD """
_DESCRIPTION = """\
AFRISPEECH-200 is a 200hr Pan-African speech corpus for clinical and general domain English accented ASR;
a dataset with 120 African accents from 13 countries and 2,463 unique African speakers.
Our goal is to raise awareness for and advance Pan-African English ASR research,
especially for the clinical domain.
"""
ACCENT_MAPPER = {
'akan (fante)': 'akan-fante',
'igbo and yoruba': 'igbo-and-yoruba',
'ijaw(nembe)': 'ijaw-nembe',
'luganda and kiswahili': 'luganda-and-kiswahili',
'luo, swahili': 'luo-swahili',
'nasarawa eggon': 'nasarawa-eggon',
'south african english': 'south-african-english',
'southern sotho': 'southern-sotho',
'swahili ,luganda ,arabic': 'swahili-luganda-arabic',
'venda and xitsonga': 'venda-and-xitsonga',
'yala mbembe': 'yala-mbembe',
'yoruba, hausa': 'yoruba-hausa'
}
ACCENT_MAPPER_REVERSED = {v:k for k,v in ACCENT_MAPPER.items()}
_ALL_CONFIGS = [
'yoruba', 'igbo', 'swahili', 'ijaw', 'xhosa', 'twi', 'luhya',
'igala', 'urhobo', 'hausa', 'kiswahili', 'zulu', 'isizulu',
'venda and xitsonga', 'borana', 'afrikaans', 'setswana', 'idoma',
'izon', 'chichewa', 'ebira', 'tshivenda', 'isixhosa',
'kinyarwanda', 'tswana', 'luganda', 'luo', 'venda', 'dholuo',
'akan (fante)', 'sepedi', 'kikuyu', 'isindebele',
'luganda and kiswahili', 'akan', 'sotho', 'south african english',
'sesotho', 'swahili ,luganda ,arabic', 'shona', 'damara',
'southern sotho', 'luo, swahili', 'ateso', 'meru', 'siswati',
'portuguese', 'esan', 'nasarawa eggon', 'ibibio', 'isoko',
'pidgin', 'alago', 'nembe', 'ngas', 'kagoma', 'ikwere', 'fulani',
'bette', 'efik', 'edo', 'hausa/fulani', 'bekwarra', 'epie',
'afemai', 'benin', 'nupe', 'tiv', 'okrika', 'etsako', 'ogoni',
'kubi', 'gbagyi', 'brass', 'oklo', 'ekene', 'ika', 'berom', 'jaba',
'itsekiri', 'ukwuani', 'yala mbembe', 'afo', 'english', 'ebiobo',
'igbo and yoruba', 'okirika', 'kalabari', 'ijaw(nembe)', 'anaang',
'eggon', 'bini', 'yoruba, hausa', 'ekpeye', 'bajju', 'kanuri',
'delta', 'khana', 'ogbia', 'mada', 'mwaghavul', 'angas', 'ikulu',
'eleme', 'igarra', 'etche', 'agatu', 'bassa', 'jukun', 'urobo',
'ibani', 'obolo', 'idah', 'eket', 'nyandang', 'estako', 'ishan',
'bassa-nge/nupe', 'bagi', 'gerawa'
]
_HOMEPAGE = "https://github.com/intron-innovation/AfriSpeech-Dataset-Paper"
_LICENSE = "http://creativecommons.org/licenses/by-nc-sa/4.0/"
# _BASE_URL = "https://huggingface.co/datasets/tobiolatunji/afrispeech-200/main/"
_AUDIO_URL = "audio/{accent}/{split}/{split}_{accent}_{shard_idx}.tar.gz"
_AUDIO_URL_ALL = "audio/{split}/{split}_{shard_idx}.tar.gz"
_TRANSCRIPT_URL = "transcripts/{accent}/{split}.csv"
_TRANSCRIPT_URL_ALL = "transcripts/{split}.csv"
_N_SHARDS_URL = "accents.json"
_SHARDS = {
'train': 35,
'dev': 2,
'test': 4
}
class AfriSpeechConfig(datasets.BuilderConfig):
"""BuilderConfig for afrispeech"""
def __init__(
self, accent, **kwargs
):
self.name = accent
self.homepage = _HOMEPAGE
self.num_clips = kwargs.pop("num_clips", None)
self.num_speakers = kwargs.pop("num_speakers", None)
self.duration_secs = kwargs.pop("duration", None)
description = (
f"AfriSpeech dataset in {accent} accent(s) with {self.num_clips} clips "
f"{self.num_speakers} speakers and {self.duration_secs} seconds"
)
super(AfriSpeechConfig, self).__init__(
name=self.name,
version=datasets.Version("1.0.0", ""),
description=description,
**kwargs,
)
def _build_config(accent):
return AfriSpeechConfig(
accent=accent,
num_clips=ACCENT_STATS[accent]["num_clips"] if ACCENT_STATS[accent]["num_clips"] else None,
num_speakers=ACCENT_STATS[accent]["num_speakers"] if ACCENT_STATS[accent]["num_speakers"] else None,
duration=round(ACCENT_STATS[accent]["duration"], 2) if ACCENT_STATS[accent]["duration"] else None,
)
class AfriSpeech(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 1000
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [_build_config(name) for name in ACCENT_STATS.keys()]
def _info(self):
description = _DESCRIPTION
features = datasets.Features(
{
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio_id": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=44_100),
"transcript": datasets.Value("string"),
"age_group": datasets.Value("string"),
"gender": datasets.Value("string"),
"accent": datasets.Value("string"),
"domain": datasets.Value("string"),
"country": datasets.Value("string"),
"duration": datasets.Value("float"),
}
)
return datasets.DatasetInfo(
description=description,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
version=self.VERSION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# If several configurations are possible (listed in BUILDER_CONFIGS),
# the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure
# with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder
# where they are extracted is returned instead of the archive
accent = self.config.name
n_shards = _SHARDS
audio_urls = {}
splits = ("train", "dev") # , "test"
for split in splits:
if self.config.name == 'all':
audio_urls[split] = []
for accent in ACCENT_STATS:
if accent == "all" or split not in ACCENT_STATS[accent]:
continue
for i in range(ACCENT_STATS[accent][split]['shards']):
audio_urls[split].append(_AUDIO_URL.format(accent=accent, split=split, shard_idx=i))
elif split in ACCENT_STATS[accent]:
audio_urls[split] = [
_AUDIO_URL.format(accent=accent, split=split,
shard_idx=i) for i in range(ACCENT_STATS[accent][split]['shards'])
]
archive_paths = dl_manager.download(audio_urls)
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
accent = self.config.name
if accent == 'all':
meta_urls = {split: _TRANSCRIPT_URL_ALL.format(split=split) for split in splits}
else:
meta_urls = {split: _TRANSCRIPT_URL.format(accent=accent, split=split)
for split in splits if split in ACCENT_STATS[accent]}
meta_paths = dl_manager.download_and_extract(meta_urls)
split_generators = []
split_names = {
"train": datasets.Split.TRAIN,
"dev": datasets.Split.VALIDATION,
# "test": datasets.Split.TEST,
}
for split in splits:
if split in ACCENT_STATS[self.config.name]:
split_generators.append(
datasets.SplitGenerator(
name=split_names.get(split, split),
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get(split),
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
"meta_path": meta_paths[split],
},
),
)
return split_generators
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
"""Yields examples as (key, example) tuples."""
# This method handles input defined in _split_generators to yield (key, example) tuples
# from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
data_fields = [key for key in self._info().features.keys() if key not in ["audio", "path"]]
metadata = {}
with open(meta_path, "r", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in tqdm(reader, desc="Reading metadata..."):
accent = ACCENT_MAPPER_REVERSED.get(self.config.name, self.config.name)
if (row['accent'] == accent) or (accent == 'all'):
row["speaker_id"] = row["user_ids"]
audio_id = "/".join(row["audio_paths"].split("/")[-2:])
# if data is incomplete, fill with empty values
metadata[audio_id] = {field: row.get(field, "") for field in data_fields}
for i, audio_archive in enumerate(archives):
#for filename, file in tqdm(audio_archive, desc=f"Searching and Extracting audios for config {self.config.name}..."):
for filename, file in audio_archive:
# _, filename = os.path.split(filename)
filename = "/".join(filename.split("/")[-2:])
if filename in metadata:
result = dict(metadata[filename])
# set the audio feature and the path to the extracted file
path = os.path.join(local_extracted_archive_paths[i], filename) if local_extracted_archive_paths else filename
result["audio"] = {"path": path, "bytes": file.read()}
result["audio_id"] = filename.replace(".wav", "")
# set path to None if the audio file doesn't exist locally (i.e. in streaming mode)
result["path"] = path if local_extracted_archive_paths else filename
yield path, result
|