Datasets:
File size: 7,010 Bytes
a687d50 928a58b a687d50 2ab5871 a687d50 2ab5871 827c353 2ab5871 a687d50 2ab5871 928a58b a687d50 bb42a16 a687d50 928a58b a687d50 2ab5871 a687d50 2ab5871 a687d50 827c353 a687d50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# coding=utf-8
# Copyright 2023 The Inseq Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SCAT: Supporting Context for Ambiguous Translations"""
import re
from pathlib import Path
from typing import Dict
import datasets
from datasets.utils.download_manager import DownloadManager
_CITATION = """\
@inproceedings{yin-etal-2021-context,
title = "Do Context-Aware Translation Models Pay the Right Attention?",
author = "Yin, Kayo and
Fernandes, Patrick and
Pruthi, Danish and
Chaudhary, Aditi and
Martins, Andr{\'e} F. T. and
Neubig, Graham",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.65",
doi = "10.18653/v1/2021.acl-long.65",
pages = "788--801",
}
"""
_DESCRIPTION = """\
The Supporting Context for Ambiguous Translations corpus (SCAT) is a dataset
of English-to-French translations annotated with human rationales used for resolving ambiguity
in pronoun anaphora resolution for multi-sentence translation.
"""
_URL = "https://huggingface.co/datasets/inseq/scat/raw/main/filtered_scat"
_HOMEPAGE = "https://github.com/neulab/contextual-mt/tree/master/data/scat"
_LICENSE = "Unknown"
class ScatConfig(datasets.BuilderConfig):
def __init__(
self,
source_language: str,
target_language: str,
**kwargs
):
"""BuilderConfig for MT-GenEval.
Args:
source_language: `str`, source language for translation.
target_language: `str`, translation language.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(**kwargs)
self.source_language = source_language
self.target_language = target_language
class Scat(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [ScatConfig(name="sentences", source_language="en", target_language="fr")]
DEFAULT_CONFIG_NAME = "sentences"
@staticmethod
def clean_string(txt: str):
return txt.replace("<p>", "").replace("</p>", "").replace("<hon>", "").replace("<hoff>", "")
@staticmethod
def swap_pronoun(txt: str):
pron: str = re.findall(r"<p>([^<]*)</p>", txt)[0]
new_pron = pron
is_cap = pron.istitle()
if pron.lower() == "elles":
new_pron = "ils"
if pron.lower() == "elle":
new_pron = "il"
if pron.lower() == "ils":
new_pron = "elles"
if pron.lower() == "il":
new_pron = "elle"
if pron.lower() == "un":
new_pron = "une"
if pron.lower() == "une":
new_pron = "un"
if is_cap:
new_pron = new_pron.capitalize()
return txt.replace(f"<p>{pron}</p>", f"<p>{new_pron}</p>")
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("int32"),
"context_en": datasets.Value("string"),
"en": datasets.Value("string"),
"context_fr": datasets.Value("string"),
"fr": datasets.Value("string"),
"contrast_fr": datasets.Value("string"),
"context_en_with_tags": datasets.Value("string"),
"en_with_tags": datasets.Value("string"),
"context_fr_with_tags": datasets.Value("string"),
"fr_with_tags": datasets.Value("string"),
"contrast_fr_with_tags": datasets.Value("string"),
"has_supporting_context": datasets.Value("bool"),
"has_supporting_preceding_context": datasets.Value("bool"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager):
"""Returns SplitGenerators."""
filepaths = {}
splits = ["train", "valid", "test"]
for split in splits:
filepaths[split] = {}
for lang in ["en", "fr"]:
for ftype in ["context", ""]:
fname = f"filtered.{split}{'.' + ftype if ftype else ''}.{lang}"
name = f"{ftype}_{lang}" if ftype else lang
filepaths[split][name] = dl_manager.download_and_extract(f"{_URL}/{fname}")
return [
datasets.SplitGenerator(
name=split_name,
gen_kwargs={
"filepaths": filepaths[split],
},
)
for split, split_name in zip(splits, ["train", "validation", "test"])
]
def _generate_examples(
self, filepaths: Dict[str, str]
):
""" Yields examples as (key, example) tuples. """
with open(filepaths["en"]) as f:
en = f.read().splitlines()
with open(filepaths["fr"]) as f:
fr = f.read().splitlines()
with open(filepaths["context_en"]) as f:
context_en = f.read().splitlines()
with open(filepaths["context_fr"]) as f:
context_fr = f.read().splitlines()
for i, (e, f, ce, cf) in enumerate(zip(en, fr, context_en, context_fr)):
allfields = " ".join([e, f, ce, cf])
has_supporting_context = False
if "<hon>" in allfields and "<hoff>" in allfields:
has_supporting_context = True
contrast_fr = self.swap_pronoun(f)
yield i, {
"id": i,
"context_en": self.clean_string(ce),
"en": self.clean_string(e),
"context_fr": self.clean_string(cf),
"fr": self.clean_string(f),
"contrast_fr": self.clean_string(contrast_fr),
"context_en_with_tags": ce,
"en_with_tags": e,
"context_fr_with_tags": cf,
"fr_with_tags": f,
"contrast_fr_with_tags": contrast_fr,
"has_supporting_context": has_supporting_context,
"has_supporting_preceding_context": "<hon>" in cf,
} |