Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Size:
10K - 100K
ArXiv:
License:
File size: 5,613 Bytes
e06fd67 a450ba4 e06fd67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
pretty_name: NusaX-senti
annotations_creators:
- expert-generated
language_creators:
- expert-generated
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
language:
- ace
- ban
- bjn
- bug
- en
- id
- jv
- mad
- min
- nij
- su
- bbc
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
dataset_info:
features:
- name: id
dtype: string
- name: text
dtype: string
- name: lang
dtype: string
- name: label
dtype:
class_label:
names:
0: negative
1: neutral
2: positive
---
# Dataset Card for NusaX-Senti
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [GitHub](https://github.com/IndoNLP/nusax/tree/main/datasets/sentiment)
- **Paper:** [EACL 2022](https://arxiv.org/abs/2205.15960)
- **Point of Contact:** [GitHub](https://github.com/IndoNLP/nusax/tree/main/datasets/sentiment)
### Dataset Summary
NusaX is a high-quality multilingual parallel corpus that covers 12 languages, Indonesian, English, and 10 Indonesian local languages, namely Acehnese, Balinese, Banjarese, Buginese, Madurese, Minangkabau, Javanese, Ngaju, Sundanese, and Toba Batak.
NusaX-Senti is a 3-labels (positive, neutral, negative) sentiment analysis dataset for 10 Indonesian local languages + Indonesian and English.
### Supported Tasks and Leaderboards
- Sentiment analysis for Indonesian languages
### Languages
- ace: acehnese,
- ban: balinese,
- bjn: banjarese,
- bug: buginese,
- eng: english,
- ind: indonesian,
- jav: javanese,
- mad: madurese,
- min: minangkabau,
- nij: ngaju,
- sun: sundanese,
- bbc: toba_batak,
## Dataset Creation
### Curation Rationale
There is a shortage of NLP research and resources for the Indonesian languages, despite the country having over 700 languages. With this in mind, we have created this dataset to support future research for the underrepresented languages in Indonesia.
### Source Data
#### Initial Data Collection and Normalization
NusaX-senti is a dataset for sentiment analysis in Indonesian that has been expertly translated by native speakers.
#### Who are the source language producers?
The data was produced by humans (native speakers).
### Annotations
#### Annotation process
NusaX-senti is derived from SmSA, which is the biggest publicly available dataset for Indonesian sentiment analysis. It comprises of comments and reviews from multiple online platforms. To ensure the quality of our dataset, we have filtered it by removing any abusive language and personally identifying information by manually reviewing all sentences. To ensure balance in the label distribution, we randomly picked 1,000 samples through stratified sampling and then translated them to the corresponding languages.
#### Who are the annotators?
Native speakers of both Indonesian and the corresponding languages.
Annotators were compensated based on the number of translated samples.
### Personal and Sensitive Information
Personal information is removed.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
NusaX is created from review text. These data sources may contain some bias.
### Other Known Limitations
No other known limitations
## Additional Information
### Licensing Information
CC-BY-SA 4.0.
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Please contact authors for any information on the dataset.
### Citation Information
```
@misc{winata2022nusax,
title={NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages},
author={Winata, Genta Indra and Aji, Alham Fikri and Cahyawijaya,
Samuel and Mahendra, Rahmad and Koto, Fajri and Romadhony,
Ade and Kurniawan, Kemal and Moeljadi, David and Prasojo,
Radityo Eko and Fung, Pascale and Baldwin, Timothy and Lau,
Jey Han and Sennrich, Rico and Ruder, Sebastian},
year={2022},
eprint={2205.15960},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@afaji](https://github.com/afaji) for adding this dataset.
|