Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
File size: 5,613 Bytes
e06fd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a450ba4
e06fd67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
pretty_name: NusaX-senti
annotations_creators:
- expert-generated
language_creators:
- expert-generated
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
language:
 - ace
 - ban
 - bjn
 - bug
 - en
 - id
 - jv
 - mad
 - min
 - nij
 - su
 - bbc
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
dataset_info:
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: lang
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: negative
          1: neutral
          2: positive
---

# Dataset Card for NusaX-Senti

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** [GitHub](https://github.com/IndoNLP/nusax/tree/main/datasets/sentiment)
- **Paper:** [EACL 2022](https://arxiv.org/abs/2205.15960)
- **Point of Contact:** [GitHub](https://github.com/IndoNLP/nusax/tree/main/datasets/sentiment)

### Dataset Summary

NusaX is a high-quality multilingual parallel corpus that covers 12 languages, Indonesian, English, and 10 Indonesian local languages, namely Acehnese, Balinese, Banjarese, Buginese, Madurese, Minangkabau, Javanese, Ngaju, Sundanese, and Toba Batak.
NusaX-Senti is a 3-labels (positive, neutral, negative) sentiment analysis dataset for 10 Indonesian local languages + Indonesian and English.


### Supported Tasks and Leaderboards

- Sentiment analysis for Indonesian languages

### Languages

- ace: acehnese,
- ban: balinese,
- bjn: banjarese,
- bug: buginese,
- eng: english,
- ind: indonesian,
- jav: javanese,
- mad: madurese,
- min: minangkabau,
- nij: ngaju,
- sun: sundanese,
- bbc: toba_batak,

## Dataset Creation

### Curation Rationale

There is a shortage of NLP research and resources for the Indonesian languages, despite the country having over 700 languages. With this in mind, we have created this dataset to support future research for the underrepresented languages in Indonesia.

### Source Data

#### Initial Data Collection and Normalization

NusaX-senti is a dataset for sentiment analysis in Indonesian that has been expertly translated by native speakers.

#### Who are the source language producers?

The data was produced by humans (native speakers).

### Annotations

#### Annotation process

NusaX-senti is derived from SmSA, which is the biggest publicly available dataset for Indonesian sentiment analysis. It comprises of comments and reviews from multiple online platforms. To ensure the quality of our dataset, we have filtered it by removing any abusive language and personally identifying information by manually reviewing all sentences. To ensure balance in the label distribution, we randomly picked 1,000 samples through stratified sampling and then translated them to the corresponding languages.

#### Who are the annotators?

Native speakers of both Indonesian and the corresponding languages.
Annotators were compensated based on the number of translated samples.

### Personal and Sensitive Information

Personal information is removed.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

NusaX is created from review text. These data sources may contain some bias.

### Other Known Limitations

No other known limitations

## Additional Information

### Licensing Information

CC-BY-SA 4.0.

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Please contact authors for any information on the dataset.

### Citation Information

```
@misc{winata2022nusax,
      title={NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages},
      author={Winata, Genta Indra and Aji, Alham Fikri and Cahyawijaya,
      Samuel and Mahendra, Rahmad and Koto, Fajri and Romadhony,
      Ade and Kurniawan, Kemal and Moeljadi, David and Prasojo,
      Radityo Eko and Fung, Pascale and Baldwin, Timothy and Lau,
      Jey Han and Sennrich, Rico and Ruder, Sebastian},
      year={2022},
      eprint={2205.15960},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

### Contributions

Thanks to [@afaji](https://github.com/afaji) for adding this dataset.