File size: 108,347 Bytes
5c16d69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
text
"Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

CoAxNN: Optimizing on-device deep learning with conditional approximate
neural networks
Guangli Li a,b,1, Xiu Ma c,d,1, Qiuchu Yu a,b, Lei Liu c,d, Huaxiao Liu c,d, Xueying Wang a,b,∗
a State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
b University of Chinese Academy of Sciences, Beijing, China
c College of Computer Science and Technology, Jilin University, Changchun, China
d MOE Key Laboratory of Symbolic Computation and Knowledge Engineering, Jilin University, Changchun, China

A R T I C L E I N F O

A B S T R A C T

Keywords:
On-device deep learning
Efficient neural networks
Model approximation and optimization

While deep neural networks have achieved superior performance in a variety of intelligent applications, the
increasing computational complexity makes them difficult to be deployed on resource-constrained devices. To"
"Efficient neural networks
Model approximation and optimization

While deep neural networks have achieved superior performance in a variety of intelligent applications, the
increasing computational complexity makes them difficult to be deployed on resource-constrained devices. To
improve the performance of on-device inference, prior studies have explored various approximate strategies,
such as neural network pruning, to optimize models based on different principles. However, when combining
these approximate strategies, a large parameter space needs to be explored. Meanwhile, different configuration
parameters may interfere with each other, damaging the performance optimization effect. In this paper, we
propose a novel model optimization framework, CoAxNN, which effectively combines different approximate
strategies, to facilitate on-device deep learning via model approximation. Based on the principles of different"
"propose a novel model optimization framework, CoAxNN, which effectively combines different approximate
strategies, to facilitate on-device deep learning via model approximation. Based on the principles of different
approximate optimizations, our approach constructs the design space and automatically finds reasonable
configurations through genetic algorithm-based design space exploration. By combining the strengths of
different approximation methods, CoAxNN enables efficient conditional inference for models at runtime. We
evaluate our approach by leveraging state-of-the-art neural networks on a representative intelligent edge
platform, Jetson AGX Orin. The experimental results demonstrate the effectiveness of CoAxNN, which achieves
up to 1.53× speedup while reducing energy by up to 34.61%, with trivial accuracy loss on CIFAR-10/100 and
CINIC-10 datasets.

1. Introduction

Convolutional neural networks (CNNs) have achieved remarkable
success in various intelligent tasks such as image classification [1]."
"up to 1.53× speedup while reducing energy by up to 34.61%, with trivial accuracy loss on CIFAR-10/100 and
CINIC-10 datasets.

1. Introduction

Convolutional neural networks (CNNs) have achieved remarkable
success in various intelligent tasks such as image classification [1].
To pursue superior performance on complex intelligent tasks, CNNs
are becoming wider and deeper, leading to tremendous computational
costs and expensive energy consumption for model execution. Recently,
on-device deep learning has been a mainstay due to its immeasurable
potential for privacy protection and real-time response. However, it is
hard to deploy complicated neural network models on edge devices due
to the limited resources.

Many efforts have been made to enable efficient on-device deep
learning via model approximation. For instance, pruning-based strate-
gies [2] compress a neural network model by reducing redundant
neurons and connections and quantization-based methods [3] improve"
"to the limited resources.

Many efforts have been made to enable efficient on-device deep
learning via model approximation. For instance, pruning-based strate-
gies [2] compress a neural network model by reducing redundant
neurons and connections and quantization-based methods [3] improve

the efficiency of model execution by leveraging low-precision compu-
tations. In addition to these model compression techniques, emerging
staging-based approximate strategies, such as early exiting, improve
model performance by conditional execution at runtime.

While these methods optimize the deep neural network models from
different directions, we found that it is still a challenging problem
to effectively combine them (as described in Section 2.4). To achieve
efficient on-device inference, it is needed to take full advantage of the
superiority of different optimization strategies. Different approximate
strategies, based on distinct principles, have their own configuration"
"to effectively combine them (as described in Section 2.4). To achieve
efficient on-device inference, it is needed to take full advantage of the
superiority of different optimization strategies. Different approximate
strategies, based on distinct principles, have their own configuration
parameters. When combining different strategies, the configuration
parameters of different strategies may affect each other, influencing the
optimization effect of the model, and even leading to poor optimization
results. As such, this paper aims to address the following challenging
problem: How to design an efficient model optimization framework to make

∗ Corresponding author at: State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.

E-mail addresses:

liguangli@ict.ac.cn (G. Li), maxiu18@mails.jlu.edu.cn (X. Ma), yuqiuchu19@mails.ucas.ac.cn (Q. Yu), liulei@jlu.edu.cn (L. Liu),

liuhuaxiao@jlu.edu.cn (H. Liu), wangxueying@ict.ac.cn (X. Wang)."
"E-mail addresses:

liguangli@ict.ac.cn (G. Li), maxiu18@mails.jlu.edu.cn (X. Ma), yuqiuchu19@mails.ucas.ac.cn (Q. Yu), liulei@jlu.edu.cn (L. Liu),

liuhuaxiao@jlu.edu.cn (H. Liu), wangxueying@ict.ac.cn (X. Wang).

1 Guangli Li and Xiu Ma contributed equally to this work.

https://doi.org/10.1016/j.sysarc.2023.102978
Received 24 April 2023; Received in revised form 18 July 2023; Accepted 23 August 2023

JournalofSystemsArchitecture143(2023)102978Availableonline25August20231383-7621/©2023ElsevierB.V.Allrightsreserved.G. Li et al.

full use of various model approximate strategies, so as to optimize on-device
deep learning while meeting accuracy requirements?

In this paper, we present a novel neural network optimization
framework, CoAxNN (Conditional Approximate Neural Networks),
which effectively combines staging-based and pruning-based approx-
imate strategies, for efficient on-device deep learning. The staging-
based approximate strategy optimizes the model structure as multiple"
"framework, CoAxNN (Conditional Approximate Neural Networks),
which effectively combines staging-based and pruning-based approx-
imate strategies, for efficient on-device deep learning. The staging-
based approximate strategy optimizes the model structure as multiple
stages with different complexities by attaching multiple exit branches,
whereas the pruning-based approximate strategy compresses the model
parameters according to the importance of filters. CoAxNN takes ac-
count of both their optimization principles and automatically searches
for reasonable configuration parameters to construct a compressed
multi-stage neural network model, thus taking full advantage of the
superiority of different approximate strategies to achieve efficient
model optimization. The optimization techniques, including pruning
and staging, have been studied individually in the past; the key novelty
of our work is to provide an effective and efficient mechanism to
combine them, so as to optimize the neural network performance with"
"model optimization. The optimization techniques, including pruning
and staging, have been studied individually in the past; the key novelty
of our work is to provide an effective and efficient mechanism to
combine them, so as to optimize the neural network performance with
a reasonable configuration, for a given task and a platform.
The main contributions of this paper are as follows:

• We present a novel neural network optimization framework,
namely CoAxNN, which effectively combines staging-based and
pruning-based approximate strategies, thereby improving actual
performance while meeting accuracy requirements, for efficient
on-device model inference.

• According to the principles of staging-based and pruning-based
approximate strategies, our framework constructs the design
space, and automatically searches for reasonable configuration
parameters, including the number of stages, the position of stages,
the threshold of stages, and the pruning rate, so as to make"
"approximate strategies, our framework constructs the design
space, and automatically searches for reasonable configuration
parameters, including the number of stages, the position of stages,
the threshold of stages, and the pruning rate, so as to make
full use of the advantages of both to achieve efficient model
optimization.

• We validate the effectiveness of CoAxNN by optimizing state-of-
the-art deep neural networks on a commercial edge device, Jetson
AGX Orin, in terms of prediction accuracy, execution latency, and
energy consumption, and experimental results show that CoAxNN
can significantly improve the performance of model inference
with trivial accuracy loss.

The rest of the paper is organized as follows. The background and
motivation are introduced in Section 2. The details of our optimization
framework are described in Section 3. The experimental evaluation
is conducted in Section 4. A discussion is given in Section 5. The
conclusion is presented in Section 6.

2. Background and motivation"
"motivation are introduced in Section 2. The details of our optimization
framework are described in Section 3. The experimental evaluation
is conducted in Section 4. A discussion is given in Section 5. The
conclusion is presented in Section 6.

2. Background and motivation

2.1. Pruning-based approximation

Neural network pruning, one of the most representative model com-
pression techniques, approximates the original neural network model
by reducing redundant neurons or connections making less contribu-
tion to model performance. Most previous works on pruning-based
approximation can be roughly divided into two categories: unstructured
pruning and structured pruning.

Prior works on weight pruning [4,5] achieve high non-structured
sparsity of pruned models by removing single parameters in a fil-
ter. Guo et al. [4] and Hal et al. [5] used magnitude-based pruning
methods, which eliminate weights with the smallest magnitude. Guo
et al. [4] proposed dynamic network surgery to reduce the network"
"sparsity of pruned models by removing single parameters in a fil-
ter. Guo et al. [4] and Hal et al. [5] used magnitude-based pruning
methods, which eliminate weights with the smallest magnitude. Guo
et al. [4] proposed dynamic network surgery to reduce the network
complexity by making on-the-fly connection pruning. Hal et al. [5]
pruned low-weight connections to reduce the storage and computation
demands by an order of magnitude. Some pruning research groups
utilize first-order or second-order derivatives of the loss function with
respect to the weights [6,7]. Hassibi et al. [6] proposed Optimal Brain
Damage (OBD), which uses all second-order derivatives of the loss

function to prune single non-essential weights. Optimal Brain Surgeon
(OBS) [7] have optimized the OBD method, which considers the condi-
tion that the Hessian matrix is non-diagonal. These approaches show
attractive theoretical performance improvement but are difficult to
be supported by existing software and hardware. Unstructured sparse"
"(OBS) [7] have optimized the OBD method, which considers the condi-
tion that the Hessian matrix is non-diagonal. These approaches show
attractive theoretical performance improvement but are difficult to
be supported by existing software and hardware. Unstructured sparse
models require specific matrix multiplication calculations and stor-
age formats, which can hardly leverage existing high-efficiency BLAS
libraries.

Unlike the early efforts on unstructured pruning that may cause
irregular calculation patterns, structured pruning reduces redundant
computations on unimportant filters or channels to produce a struc-
tured sparse model. The corresponding feature maps can be deleted as
the filters are pruned. Therefore, much recent work has focused on filter
pruning methods. SFP [2] and ASFP [8] dynamically pruned the filters
in a soft manner, which zeroizes the unimportant filters and keeps
updating them in the training stage. Li et al. [9] presented a fusion-"
"the filters are pruned. Therefore, much recent work has focused on filter
pruning methods. SFP [2] and ASFP [8] dynamically pruned the filters
in a soft manner, which zeroizes the unimportant filters and keeps
updating them in the training stage. Li et al. [9] presented a fusion-
catalyzed filter pruning approach, which simultaneously optimizes the
parametric and non-parametric operators. Luo et al. [10] pruned filters
based on statistics information computed from its next layer. The filters
of different layers may have different influences on model prediction. Li
et al. [11] proposed a flexible-rate filter pruning approach, FlexPruner,
which automatically selects the number of filters to be pruned for
each layer. Plochaet et al. [12] introduced a hardware-aware pruning
method with the goal of decreasing the inference time for FPGA deep
learning accelerators, adaptively pruning the neural network based on
the size of the systolic array used to calculate the convolutions. To"
"each layer. Plochaet et al. [12] introduced a hardware-aware pruning
method with the goal of decreasing the inference time for FPGA deep
learning accelerators, adaptively pruning the neural network based on
the size of the systolic array used to calculate the convolutions. To
preserve the robustness at a high sparsity ratio in structured pruning,
Zhuang et al. [13] proposed an effective filter importance criterion to
evaluate the importance of filters by estimating their contribution to
the adversarial training loss. Besides, some researchers have found
the value of network pruning in discovering the network architecture
[14,15]. Liu et al. [14] demonstrated that in some cases pruning can
be useful as an architecture search paradigm. Li et al. [15] proposed
a random architecture search to find a good architecture given a
pre-defined model by channel pruning. Li et al. [16] proposed an end-
to-end channel pruning method to search out the desired sub-network"
"be useful as an architecture search paradigm. Li et al. [15] proposed
a random architecture search to find a good architecture given a
pre-defined model by channel pruning. Li et al. [16] proposed an end-
to-end channel pruning method to search out the desired sub-network
automatically and efficiently, which learns per-layer sparsity through
depth-wise binary convolution. Ding et al. [17] presented a neural
architecture search with pruning method, which derives the most po-
tent model by removing trivial and redundant edges from the whole
neural network topology. The structured sparse model can be perfectly
supported by existing libraries to achieve a realistic acceleration. In
this paper, we adopt filter pruning to realize practical performance
improvement for neural network models.

2.2. Staging-based approximation

Prior studies [18,19] found that the difficulty of classifying an image
in real-world scenarios is diverse. The easy samples can be classified"
"this paper, we adopt filter pruning to realize practical performance
improvement for neural network models.

2.2. Staging-based approximation

Prior studies [18,19] found that the difficulty of classifying an image
in real-world scenarios is diverse. The easy samples can be classified
with low effort, and difficult samples consume more computation ef-
forts for prediction. Staging-based approximate strategies, such as early
exiting [18] and layer skipping [20], emerge as a prominent important
technique for separating the classification of easy and hard inputs.
The original neural network uses a fixed computation process for the
prediction of all samples. Staging-based approximate strategies perform
adaptive computing for samples according to conditions at run-time.
Teerapittayanon et al. [18] demonstrated that the deep neural network
with additional side branch classifiers can both improve accuracy and
significantly reduce the inference time of the network. Panda et al. [19]"
"adaptive computing for samples according to conditions at run-time.
Teerapittayanon et al. [18] demonstrated that the deep neural network
with additional side branch classifiers can both improve accuracy and
significantly reduce the inference time of the network. Panda et al. [19]
proposed Conditional Deep Learning cascading a linear network for
each convolutional layer and monitoring the output of the linear net-
work to decide whether classification can be terminated at the current
stage or not. Fang et al. [21] presented an input-adaptive framework
for video analytics, which adopts an architecture search-based scheme
to find the optimal architecture for each early exit branch. Wang

JournalofSystemsArchitecture143(2023)1029782G. Li et al.

et al. [22] designed dynamic layer-skipping mechanisms, which sup-
press unnecessary costs for easy samples and halt inference for all
samples to meet resource constraints for the inference of more compli-"
"JournalofSystemsArchitecture143(2023)1029782G. Li et al.

et al. [22] designed dynamic layer-skipping mechanisms, which sup-
press unnecessary costs for easy samples and halt inference for all
samples to meet resource constraints for the inference of more compli-
cated CNN backbones. Figurnov et al. [23] studied early termination in
each residual unit of ResNets. Farhadi et al. [23] implemented an early-
exiting method on the FPGA platform using partial reconfiguration to
reduce the amount of needed computation. Jayakodi et al. [24] used
Bayesian Optimization to configure the early exit neural networks to
trade off accuracy and energy. To reduce unnecessary intermediate
calculations in the inference process of Branchynet, Liang et al. [25]
directly determined the exit position of the sample in the multi-branch
network according to the difficulty of the sample without intermediate
trial errors. Jo et al. [26] proposed a low-cost early exit network, which"
"calculations in the inference process of Branchynet, Liang et al. [25]
directly determined the exit position of the sample in the multi-branch
network according to the difficulty of the sample without intermediate
trial errors. Jo et al. [26] proposed a low-cost early exit network, which
significantly improves energy efficiencies by reducing the parameters
used in inference with efficient branch structures.
In this paper, we
achieve a multi-stage approximate model by early exiting to accelerate
model inference for input samples in real-world scenarios.

2.3. Design space exploration

Design space exploration (DSE) is a systematic analysis method,
which searches for the optimal solutions in a large design space accord-
ing to the requirements. For example, in the staging-based approximate
strategy, deciding whether or not an exit branch should be inserted at
some position in the middle of the neural network model, and how
the thresholds for each exit point should be set can be seen as a DSE"
"ing to the requirements. For example, in the staging-based approximate
strategy, deciding whether or not an exit branch should be inserted at
some position in the middle of the neural network model, and how
the thresholds for each exit point should be set can be seen as a DSE
problem. Panda et al. [19] and Teerapittayanon et al. [18] empirically
set the location and threshold for each exit in the conditional neural
network model. Jayakodi et al. [24] found the best thresholds via
Bayesian Optimization for the specified trade-off between accuracy
and energy consumption of inference. Park et al. [27] systematically
determined the locations and thresholds of exit branches by genetic
algorithm. Park et al. [28] integrated the once-for-all technique and
BPNet, which consider architectures of base network and exit branches
simultaneously in the same search process. Besides, the fine-grained fil-
ter pruning, that is assign reasonable pruning rates for different layers,"
"algorithm. Park et al. [28] integrated the once-for-all technique and
BPNet, which consider architectures of base network and exit branches
simultaneously in the same search process. Besides, the fine-grained fil-
ter pruning, that is assign reasonable pruning rates for different layers,
can also be considered as a classic DSE problem. Li et al. [11] proposed
a flexible-rate filter pruning method, which selects the filters to be
pruned with a greedy-based strategy. He et al. [29] sampled design
space using reinforcement learning, which performs customizing prun-
ing for each layer, thus improving model compression. Qian et al. [30]
proposed a hierarchical threshold pruning method, which considers
the filter importance within relatively redundant layers instead of all
layers, achieving layerwise pruning for a better network structure. In
this paper, we regard the configuration parameters of staging-based
and pruning-based approximate strategies as the whole design space"
"the filter importance within relatively redundant layers instead of all
layers, achieving layerwise pruning for a better network structure. In
this paper, we regard the configuration parameters of staging-based
and pruning-based approximate strategies as the whole design space
and employ a genetic algorithm(GA)-based DSE to automatically find
the (near-)optimal configuration to effectively combine them, achieving
efficient on-device inference. In the future, we will consider setting
reasonable pruning rates for different layers.

2.4. Motivation

The pruning-based approximate strategy focuses on compressing the
model, which reduces the computation costs by deleting unimportant
parameters in the model, so how to set the pruning rate needs to be
considered. The staging-based approximate strategy concentrates on
improving the execution speed of the model, which allows the inference
of most simple samples to terminate with a good prediction in the"
"parameters in the model, so how to set the pruning rate needs to be
considered. The staging-based approximate strategy concentrates on
improving the execution speed of the model, which allows the inference
of most simple samples to terminate with a good prediction in the
earlier stage by attaching multiple exits in the original model. How
to place the exits and how to set a threshold for each exit should
be considered for the design of a staging-based approximate strategy.
Combining different approximate strategies will involve more configu-
ration parameters and the approximate strategies may affect each other,
which potentially influences the effect of the model optimization.

Fig. 1. The optimization effect for ResNet-56 using different configuration parameters
under the specified accuracy requirement.

Fig. 1 shows the optimization effect of the ResNet-56 using different
configuration parameters under the specified requirements of accuracy"
"Fig. 1. The optimization effect for ResNet-56 using different configuration parameters
under the specified accuracy requirement.

Fig. 1 shows the optimization effect of the ResNet-56 using different
configuration parameters under the specified requirements of accuracy
on the CIFAR-10 dataset, where the triples (𝑥, 𝑦, 𝑧) represent the number
of stages, stage threshold, and pruning rate, respectively. Fig. 1(a), (b),
and (c) show the computational costs (normalized to the computational
cost of the baseline model) of various optimization configurations
when the accuracy is 98.1%, 98.7%, and 98.8% (normalized to the
accuracy of the baseline model). In practice, a certain error can be
allowed in model accuracy (±0.001), for example, 98.09%, and 98.12%
both meet the requirement of 98.1%. The relationship between the
number of stages and the computational cost is not regular, which
will be affected by the stage threshold and pruning rate, for example,"
"allowed in model accuracy (±0.001), for example, 98.09%, and 98.12%
both meet the requirement of 98.1%. The relationship between the
number of stages and the computational cost is not regular, which
will be affected by the stage threshold and pruning rate, for example,
in Fig. 1(c), the computational cost of (3,0.08,0) with more stages is
larger than (2,0.1,0.1), the computational cost of (2,0.1,0.1) with fewer
stages is larger than (3,0.2,0.1). Besides, affected by the staging-based
optimization, the computational costs of the optimized model at a high
pruning rate may be larger than that at low pruning rates, for example,
in Fig. 1(b), the configuration of (2,0.08,0.3) with a pruning rate of 0.3
has more computational costs than (3,0.2,0.2) with a pruning rate of
0.2. In Fig. 1(a), we can observe from the partial experimental results
that at the accuracy requirement of 98.1%, the computation of the
optimized models using three stages is less than that of the model using"
"has more computational costs than (3,0.2,0.2) with a pruning rate of
0.2. In Fig. 1(a), we can observe from the partial experimental results
that at the accuracy requirement of 98.1%, the computation of the
optimized models using three stages is less than that of the model using
two stages. But this law does not apply to the optimization effect of
other accuracy requirements such as 98.7% and 98.8%. It is observed
that the optimization effects of different configuration parameters are
distinct and irregular under the specified accuracy requirement, and
thus it is difficult to find an optimal model. This example shows that

JournalofSystemsArchitecture143(2023)1029783G. Li et al.

Fig. 2. The optimization effect of staging-based strategy, pruning-based strategy, and
CoAxNN for ResNet-56 on the CIFAR-10.

it is challenging to combine different approximate strategies to achieve
efficient optimization for neural network models.

In this paper, for a specified accuracy requirement, we focus on"
"CoAxNN for ResNet-56 on the CIFAR-10.

it is challenging to combine different approximate strategies to achieve
efficient optimization for neural network models.

In this paper, for a specified accuracy requirement, we focus on
combining the principles of different approximate strategies to con-
struct a design space and automatically search for reasonable con-
figuration parameters, giving full play to the advantages of different
approximate strategies to achieve efficient optimization for neural net-
work models. As shown in Fig. 2, at the accuracy requirement of
99.6%, for the staging-based optimization strategy, the two stages are
used and the threshold is set to 0.07 for each stage, the normalized
computational cost is 0.89. For the pruning-based optimization, the
pruning rate is set to 0.1, and the normalized computational cost is
0.89. CoAxNN effectively combines pruning-based and staging-based
strategies, whose computational cost is 0.64, greatly improving the
computational performance."
"computational cost is 0.89. For the pruning-based optimization, the
pruning rate is set to 0.1, and the normalized computational cost is
0.89. CoAxNN effectively combines pruning-based and staging-based
strategies, whose computational cost is 0.64, greatly improving the
computational performance.

3. Methodology

3.1. Overview

In this paper, we propose an efficient optimization framework for
neural network models, CoAxNN, which automatically searches for
reasonable configuration parameters through a GA-based DSE. CoAxNN
effectively combines staging-based with pruning-based approximate
strategies to make full use of the superiority of both, thereby improving
the actual performance while meeting the accuracy requirements for
neural network models.

The overview of the CoAxNN is shown in Fig. 3. First, for the
original deep neural network model, CoAxNN performs staging-based
and pruning-based approximate strategies according to the genes of
the chromosome for each individual, which generates a compressed"
"neural network models.

The overview of the CoAxNN is shown in Fig. 3. First, for the
original deep neural network model, CoAxNN performs staging-based
and pruning-based approximate strategies according to the genes of
the chromosome for each individual, which generates a compressed
multi-stage model. According to the availability of stages in the gene,
CoAxNN attaches exit branches to the original model to build a multi-
stage conditional activation model. According to the threshold of each
stage, CoAxNN predicts input samples, having distinct difficulties, by
multiple stages with different computational complexities, with the
entropy-aware activation manner. The obtained multi-stage model is
compressed by removing unimportant filters, thereby further reducing
computational costs. Next, CoAxNN evaluates the fitness of the cor-
responding individual according to the accuracy and latency of the
compressed multi-stage model and sorts the individuals according to"
"compressed by removing unimportant filters, thereby further reducing
computational costs. Next, CoAxNN evaluates the fitness of the cor-
responding individual according to the accuracy and latency of the
compressed multi-stage model and sorts the individuals according to
their fitness. Then, the chromosome pool is updated, generating the
next generation of individuals. After the evolution of multiple gener-
ations, which repeat the above steps, we can obtain several individuals
that have optimal performance.

3.2. Staging-based approximate optimization

In general, executing a neural network model is a one-staged ap-
proach, which processes all the inputs in the same manner, i.e., starting
from the input operator and performing it operator by operator until
the final exit operator. Prior studies [19] found that classification
difficulty varies widely across inputs in real-world scenarios. Different
computational complexities need to be considered when predicting in-"
"from the input operator and performing it operator by operator until
the final exit operator. Prior studies [19] found that classification
difficulty varies widely across inputs in real-world scenarios. Different
computational complexities need to be considered when predicting in-
puts. Most of the input samples can be correctly classified by employing

a part of a neural network, without the computation effort of the
entire neural network. Early exiting strategy often comes into play,
which allows simple inputs to exit early with a good prediction by the
addition of multiple exit points. By leveraging the early exiting strategy,
CoAxNN achieves a staging-based approximation to give an early exit-
ing opportunity for simple inputs. We denote a neural network model
as  = {𝑓1, 𝑓2, … , 𝑓𝑚} which consists of 𝑚 operators. In CoAxNN, a
multi-stage model,  ∗, can be formalized as follows:

 ∗ =

𝜏


𝑖=0


𝑖

(1)

where 𝜏 is the number of stages.

The "
"ing opportunity for simple inputs. We denote a neural network model
as  = {𝑓1, 𝑓2, … , 𝑓𝑚} which consists of 𝑚 operators. In CoAxNN, a
multi-stage model,  ∗, can be formalized as follows:

 ∗ =

𝜏


𝑖=0


𝑖

(1)

where 𝜏 is the number of stages.

The 

𝑖 is an approximate model with the staging-based strategy,

which can be formalized as:



𝑖 =

{

𝑖 + 

𝑖 + 
 , 𝑖 = 𝜏

𝑖, 1 ⩽ 𝑖 < 𝜏

(2)

𝑖 = {𝑓1, 𝑓2, … , 𝑓𝑝𝑖

where 
} represents a part of the original neural
network with 𝑝𝑖 operators, 
, … , 𝑓 ∗
, 𝑓 ∗
} represents an addi-
𝑏𝑖
2
tional exit branch with 𝑏𝑖 operators, and 
𝑖 = {𝑐𝑖, 𝜀𝑖} represents an exit
checker, containing a threshold 𝜀𝑖 and a conditional activation operator
𝜏 =  denotes the original (main)
𝑐𝑖 using threshold 𝜀𝑖. Especially, 
neural network model.

𝑖 = {𝑓 ∗
1

It is non-trivial to design a staging-based approximate strategy
for adaptive conditional inference of a multi-stage model, and the
following factors need to be considered:

• Number of "
"𝜏 =  denotes the original (main)
𝑐𝑖 using threshold 𝜀𝑖. Especially, 
neural network model.

𝑖 = {𝑓 ∗
1

It is non-trivial to design a staging-based approximate strategy
for adaptive conditional inference of a multi-stage model, and the
following factors need to be considered:

• Number of 

𝒊. A multi-stage model with arbitrary exits can be built
by stage availability. However, fewer exits cannot cover the diverse
difficulty of classification of input samples, whereas too many exits
increase the latency of hard samples that do not exit early.

• Selection of Attached Position (𝒑𝒊) for 

𝒊. The exits at a more for-
mer position cannot provide satisfactory accuracy, while redundant
computation may be involved at a more latter exit. Besides, attached
exit branches may also interfere with a variety of computational
graph optimization methods, such as operator fusion and mem-
ory reuse, provided by the deep learning frameworks, increasing
operation counts, data movement, and other system overheads."
"exit branches may also interfere with a variety of computational
graph optimization methods, such as operator fusion and mem-
ory reuse, provided by the deep learning frameworks, increasing
operation counts, data movement, and other system overheads.

• Confidence Threshold (𝜺𝒊) of 

𝒊. The confidence threshold is used
to determine whether the prediction result of stage 
𝑖 has sufficient
confidence. With a higher threshold, complex samples may finish
predictions from the previous exits with lower accuracy, and using
a lower threshold, simple samples may use more complex compu-
tations to complete inference, due to cannot end from the previous
classifiers, incurring additional computational overheads.

• Structure Design for 
𝒊. The structure of each exit branch (
𝑖)
is not identical. Each 
, 𝑓 ∗
𝑖 consists of several operators ({𝑓 ∗
, … ,
2
1
𝑓 ∗
𝑏𝑖−1}) used for feature extraction and a linear classifier 𝑓 ∗
. Feature
𝑏𝑖
extraction operators receive the intermediate feature map from 𝑓𝑝𝑖"
"• Structure Design for 
𝒊. The structure of each exit branch (
𝑖)
is not identical. Each 
, 𝑓 ∗
𝑖 consists of several operators ({𝑓 ∗
, … ,
2
1
𝑓 ∗
𝑏𝑖−1}) used for feature extraction and a linear classifier 𝑓 ∗
. Feature
𝑏𝑖
extraction operators receive the intermediate feature map from 𝑓𝑝𝑖
and extract more high-level features in the form required by a
subsequent linear classifier. The configuration and complexity of the
intermediate feature maps for different depths of the main neural
networks are varying, making the design of 
𝑖 arduous. The 𝑓 ∗
𝑏𝑖
operator is used to produce classification results based on the output
of 𝑓 ∗
is different at
each 
𝑖.

𝑏𝑖−1, and the number of input feature maps for 𝑓 ∗
𝑏𝑖

To effectively utilize the early-exiting method to build an approxi-
mate multi-stage model, our approach carefully designs principles for
each module.

• Setting of Number (𝜏) and Attached Position (𝒑𝒊) of 
𝒊. The
number (𝜏) and the position (𝒑𝒊) of the exit branches (
𝒊) are two"
"𝑏𝑖

To effectively utilize the early-exiting method to build an approxi-
mate multi-stage model, our approach carefully designs principles for
each module.

• Setting of Number (𝜏) and Attached Position (𝒑𝒊) of 
𝒊. The
number (𝜏) and the position (𝒑𝒊) of the exit branches (
𝒊) are two
factors that will affect each other. Some unnecessary exits may
be inserted, having little improvement in accuracy but leading to
non-negligible computational overheads, when the number of exit
branches is large. When the position of the exit branch is not

JournalofSystemsArchitecture143(2023)1029784G. Li et al.

Fig. 3. Overview of CoAxNN.

• Structure Design for 

reasonable, and cannot distinguish the difficulty of the sample, it
is difficult to increase the number of exit branches to reduce the
computational cost while meeting the model accuracy requirement.
To address this problem, CoAxNN puts the availability of each stage
into the design space of the GA, and each available stage corresponds"
"is difficult to increase the number of exit branches to reduce the
computational cost while meeting the model accuracy requirement.
To address this problem, CoAxNN puts the availability of each stage
into the design space of the GA, and each available stage corresponds
to a new exit branch. The availability of the stage can control the
number and position of exit branches at the same time. Besides,
to introduce fewer new model structures and preserve the existing
graph optimizations, CoAxNN chooses to attach exit branches 
𝑖 at
the end of the group of building blocks. It is noted that CoAxNN does
not attach the exit branch after the last group of building blocks, as
there is already an existing original exit for the original backbone.
𝒊. We introduce a feature extractor and
a linear classifier for each exit branch 
𝑖. The structure of the
feature extractor is designed with the building block as granularity.
This design not only retains the original neural network structure"
"𝒊. We introduce a feature extractor and
a linear classifier for each exit branch 
𝑖. The structure of the
feature extractor is designed with the building block as granularity.
This design not only retains the original neural network structure
but also provides more opportunities for system-level optimizations.
Generally, operators for feature extraction also contain non-linear
activation operators such as rectified linear units, and normalization
operators such as batch normalization. Besides, prior studies [24]
revealed that the output feature maps of operators at shallow depths
of a neural network have a relatively large height and width, which
results in a large number of input feature maps being passed to the
linear classifier of former exits, thus leading to a long latency for
easy samples that exit early. As such, in CoAxNN, we add an extra
pooling operator after the last feature extraction operator of shallow

𝑖.

• Confidence Measure in 

𝒊. The 

𝑖. A reliable "
"linear classifier of former exits, thus leading to a long latency for
easy samples that exit early. As such, in CoAxNN, we add an extra
pooling operator after the last feature extraction operator of shallow

𝑖.

• Confidence Measure in 

𝒊. The 

𝑖. A reliable 

𝑖 takes a threshold checking step,
which determines whether an input returns from the current exit
or continues to the next exit according to the prediction result
of 
𝑖 should have the ability to identify whether
the classification results are sufficiently confident. There are var-
ious methods [31], including maximum probability, entropy, and
margin, for the design of 
𝑖. Prior work [24] has demonstrated
the performance of the aforementioned three confidence types is
almost identical. CoAxNN chooses to use the entropy of predicted
probability as the entropy-aware activation operator (𝑐𝑖) to evaluate
the confidence of the prediction result for the input sample (𝑥) of
the 𝑖th stage classifier, as follows:

entropy( ̂𝑦𝑖) =

𝐶


𝑐=1"
"almost identical. CoAxNN chooses to use the entropy of predicted
probability as the entropy-aware activation operator (𝑐𝑖) to evaluate
the confidence of the prediction result for the input sample (𝑥) of
the 𝑖th stage classifier, as follows:

entropy( ̂𝑦𝑖) =

𝐶


𝑐=1

̂𝑦𝑖(𝑐) log ̂𝑦𝑖(𝑐)

(3)

where ̂𝑦𝑖 is the probability distribution of the output of the linear
classifier 𝑓 ∗
on different classification labels, calculated by the soft-
𝑏𝑖
max operator, and 𝐶 is the number of classes. An entropy threshold
𝜀𝑖 is used to decide whether an input returns the prediction of the
current exit or activates the latter operators. A higher confidence
value implies that the input sample that arrived at the current exit is
hard and needs to be processed by a more complex stage to complete
accurate classification.

3.3. Pruning-based approximate optimization

In addition to the staging-based approximate strategy that pro-
vides adaptive computing based on conditional activation at runtime,"
"hard and needs to be processed by a more complex stage to complete
accurate classification.

3.3. Pruning-based approximate optimization

In addition to the staging-based approximate strategy that pro-
vides adaptive computing based on conditional activation at runtime,
CoAxNN also integrates a pruning-based approximate strategy to com-
press model size. The neural network pruning technique has been
widely studied by researchers, which can be broadly categorized as
structured and unstructured pruning. Structured pruning such as filter
pruning has higher computational efficiency than unstructured prun-
ing [32]. Especially, filter pruning is employed, which not only deletes
redundant computations of unimportant filters but also leads to the
removal of corresponding feature maps, providing realistic performance
improvements. In CoAxNN, we utilize the filter pruning method to
compress the multi-stage model and quantify the importance of each
filter in a convolutional operator based on the 𝓁2-norm:






‖2 ="
"removal of corresponding feature maps, providing realistic performance
improvements. In CoAxNN, we utilize the filter pruning method to
compress the multi-stage model and quantify the importance of each
filter in a convolutional operator based on the 𝓁2-norm:






‖2 =
𝑟‖







𝑘


𝑚


𝑛


𝑡=1

𝑖=1

𝑗=1

𝑤2

𝑡,𝑖,𝑗

(4)

where 
𝑟 indicates the 𝑟th filter in a convolutional operator, 𝑤𝑡,𝑖,𝑗
denotes an element of 
𝑟 that resides in the 𝑖th row and 𝑗th column
in the 𝑡th channel, 𝑘 denotes the input channels, 𝑚 denotes the height
of filters, and 𝑛 denotes the width of filters. The filters with smaller 𝓁2-
norm will be given higher priority to be pruned than those of higher
𝓁2-norm. To keep the model capacity and minimize the loss of accuracy
as much as possible, we utilize a dynamic pruning scheme [2] for
staging-based approximate CNNs, which zeroes the pruned filters and
keeps updating them in the re-training process.

3.4. Training of CoAxNN"
"𝓁2-norm. To keep the model capacity and minimize the loss of accuracy
as much as possible, we utilize a dynamic pruning scheme [2] for
staging-based approximate CNNs, which zeroes the pruned filters and
keeps updating them in the re-training process.

3.4. Training of CoAxNN

Joint training trains all classifiers in a neural network model at
the same time, which is widely used in the training process of neural
network models with exit branches [18,27]. It defines a loss function
for each classifier and minimizes the weighted sum of loss functions
for all classifiers during training. Therefore, each classifier provides
regularization for others to alleviate the overfitting of the model.
CoAxNN utilizes joint training optimization to train the backbone
neural network and exit branches at the same time and minimize the
weighted sum of the cross-entropy loss functions of all stages, denoted
as follows:



joint =

𝜏


𝑖=1

𝜆𝑖

CE(𝑦, ̄𝑦𝑖)


(5)"
"CoAxNN utilizes joint training optimization to train the backbone
neural network and exit branches at the same time and minimize the
weighted sum of the cross-entropy loss functions of all stages, denoted
as follows:



joint =

𝜏


𝑖=1

𝜆𝑖

CE(𝑦, ̄𝑦𝑖)


(5)

where 𝜆𝑖 represents the weight of the loss function of the 𝑖th stage,
𝑦 is the real classification of 𝑥 which is shared by all stages, ̄𝑦𝑖 is the
output of linear classifier 𝑓 ∗
of the 𝑖th stage, and the cross-entropy loss
𝑏𝑖
function 

CE is calculated as follows:

CE(𝑦, ̄𝑦𝑖) = −


𝐶


𝑐=1

𝑦(𝑐) log

e ̄𝑦𝑖(𝑐)
𝑗=1 e ̄𝑦𝑖(𝑗)

∑𝐶

(6)

JournalofSystemsArchitecture143(2023)1029785G. Li et al.

The training process of CoAxNN is summarized in Algorithm 1.
It is given training dataset , training epochs 𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥, batch size
𝜌, original deep neural network model  , number of stages 𝜏, the
weights for loss functions of all stages 𝜆, and the chromosome pool
𝑃 . First, based on the genes on the chromosome, CoAxNN performs a"
"It is given training dataset , training epochs 𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥, batch size
𝜌, original deep neural network model  , number of stages 𝜏, the
weights for loss functions of all stages 𝜆, and the chromosome pool
𝑃 . First, based on the genes on the chromosome, CoAxNN performs a
staging-based optimization strategy, which approximates the original
neural network model as a multi-stage conditional activation model
by attaching exit branches (Lines 1–11). Then, the generated multi-
stage model is initialized randomly (Lines 12–13). Next, the model
is compressed and tuned according to the training data  and the
gene of the pruning rate (𝑃 [𝑝].𝑝𝑟𝑢𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒) on the chromosome in
𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥 epochs (Lines 14–34). In each epoch, CoAxNN calculates the
loss function according to Eq. (5) and updates the weights by the
traditional backpropagation algorithm (Lines 15–26). Besides, for each
convolutional operator in the approximate multi-stage model, CoAxNN
obtains the number of filters (𝑡) and calculates the 𝓁2-norm of each"
"loss function according to Eq. (5) and updates the weights by the
traditional backpropagation algorithm (Lines 15–26). Besides, for each
convolutional operator in the approximate multi-stage model, CoAxNN
obtains the number of filters (𝑡) and calculates the 𝓁2-norm of each
filter according to Eq. (4), then the dynamic pruning scheme is used
to prune ⌊𝑡 × 𝑃 [𝑝].𝑝𝑟𝑢𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒⌋ filters with low 𝓁2-norm (Lines 27–33).
The pruned filters can be updated once it is found to be important at
any time, thus maintaining the learning ability of the model. In the
pruning process of each epoch, CoAxNN will reorder the importance
of filters for each convolutional operator, and select the filters to be
pruned. Finally, the trained model  ′ is obtained (Line 36).

Algorithm 1: CoAxNN training

Input: training data: , training epoch: 𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥, batch size: 𝜌,

original model backbone:  , the number of stages: 𝜏, the
weights for loss functions: 𝜆, chromosomes: 𝑃

Output: trained models:  ′

1 for 𝑝 = 1 → 𝑃 .𝑠𝑖𝑧𝑒() do"
"Algorithm 1: CoAxNN training

Input: training data: , training epoch: 𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥, batch size: 𝜌,

original model backbone:  , the number of stages: 𝜏, the
weights for loss functions: 𝜆, chromosomes: 𝑃

Output: trained models:  ′

1 for 𝑝 = 1 → 𝑃 .𝑠𝑖𝑧𝑒() do

// Generate model structure
 ′[𝑝] =  ;
for 𝑖 = 1 → 𝜏 − 1 do

if P[p][i] is available then
𝑖 from  ;
Construct 
𝑖 according to 
Construct 
Construct 
𝑖 according to 𝑃 [𝑝][𝑖].𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑;

𝑖 + 
𝑖 + 
𝑖 = 
𝑖;
 ′[𝑝] =  ′[𝑝] ∪ 

𝑖;

𝑖;

end

end
// Tune and prune model parameters
 ′[𝑝] = LoadModel( ′[𝑝], 𝑖𝑛𝑖𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠);
𝑡𝑟𝑎𝑖𝑛_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = make_batch(, 𝜌);
for 𝑒𝑝𝑜𝑐ℎ = 1 → 𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥 do

foreach (𝑖𝑛𝑝𝑢𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡) ∈ 𝑡𝑟𝑎𝑖𝑛_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 do
𝑜𝑢𝑡𝑝𝑢𝑡 =  ′[𝑝].forward(𝑖𝑛𝑝𝑢𝑡);
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑙𝑜𝑠𝑠 ← 0;
for 𝑖 = 1 → 𝜏 do

if P[p][i] is available then

𝑙𝑜𝑠𝑠 = CrossEntropy(𝑜𝑢𝑡𝑝𝑢𝑡[𝑖], 𝑡𝑎𝑟𝑔𝑒𝑡);
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑙𝑜𝑠𝑠 += 𝜆[𝑖] × 𝑙𝑜𝑠𝑠;

end

end
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑙𝑜𝑠𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑙𝑜𝑠𝑠∕𝑠𝑢𝑚(𝜆);
 ′[𝑝].backward(𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑙𝑜𝑠𝑠);

end
foreach 𝑓 ∈  ′[𝑝] do

if 𝑓 .𝑡𝑦𝑝𝑒 == 𝐶𝑂𝑁𝑉 then"
"𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑙𝑜𝑠𝑠 ← 0;
for 𝑖 = 1 → 𝜏 do

if P[p][i] is available then

𝑙𝑜𝑠𝑠 = CrossEntropy(𝑜𝑢𝑡𝑝𝑢𝑡[𝑖], 𝑡𝑎𝑟𝑔𝑒𝑡);
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑙𝑜𝑠𝑠 += 𝜆[𝑖] × 𝑙𝑜𝑠𝑠;

end

end
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑙𝑜𝑠𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑙𝑜𝑠𝑠∕𝑠𝑢𝑚(𝜆);
 ′[𝑝].backward(𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑙𝑜𝑠𝑠);

end
foreach 𝑓 ∈  ′[𝑝] do

if 𝑓 .𝑡𝑦𝑝𝑒 == 𝐶𝑂𝑁𝑉 then

𝑡 ← the filters number of 𝑓 ;
Calculate the 𝓁2-norm for the filters;
Zeroize the lowest filters ⌊𝑡 × 𝑃 [𝑝].𝑝𝑟𝑢𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒⌋ filters;

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

3.5. GA-based design space exploration

To effectively combine the staging-based with the pruning-based ap-
proximate strategies, the design space of CoAxNN includes the number
of stages, the position of the stage, the threshold of the stage, and the
pruning rate, which is a very large search space. When the number of
stages is 𝜏, the search space for determining which stage is available
is 2𝜏 , the search space for thresholds is 𝑄𝜏 where 𝑄 is the number"
"of stages, the position of the stage, the threshold of the stage, and the
pruning rate, which is a very large search space. When the number of
stages is 𝜏, the search space for determining which stage is available
is 2𝜏 , the search space for thresholds is 𝑄𝜏 where 𝑄 is the number
of candidate thresholds, and the search space for pruning rate is 𝑅,
which indicates the number of candidate pruning rates. The parameter
configurations are searched independently, making the search space as
large as 2𝜏 × 𝑄𝜏 × 𝑅. It is laborious to explore the large parameter
space by brute force search. CoAxNN adopts the genetic algorithm
for the design space exploration. Genetic algorithm [33] is inspired by
biological evolution based on Charles Darwin’s theory of natural selec-
tion, which is often used to find the (near-)optimal solution in a large
search space. In CoAxNN, the number of genes on each chromosome is
2 × (𝜏 − 1) + 1. For the first 𝜏 − 1 stages, CoAxNN uses two genes, one for"
"biological evolution based on Charles Darwin’s theory of natural selec-
tion, which is often used to find the (near-)optimal solution in a large
search space. In CoAxNN, the number of genes on each chromosome is
2 × (𝜏 − 1) + 1. For the first 𝜏 − 1 stages, CoAxNN uses two genes, one for
whether the stage is available, and the other for the threshold of the
stage. In addition, CoAxNN also uses a gene to represent the pruning
ratio. The fitness of the single individual is represented by a 2-tuple
(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦). GA-based DSE aims to increase accuracy and reduce
latency, finding the (near-)optimal solutions for model performance.

Algorithm 2 shows that how accuracy and latency are evaluated
for individuals. It is given the test dataset , the number of stages 𝜏,
and the chromosome set 𝑃 . For each individual, CoAxNN obtains the
model 𝑛𝑒𝑡 configured with the corresponding gene (Line 4). Then, the
test dataset  is predicted by the model, and the result of prediction"
"for individuals. It is given the test dataset , the number of stages 𝜏,
and the chromosome set 𝑃 . For each individual, CoAxNN obtains the
model 𝑛𝑒𝑡 configured with the corresponding gene (Line 4). Then, the
test dataset  is predicted by the model, and the result of prediction
𝑜𝑢𝑡𝑝𝑢𝑡 is got (Line 6). For each input sample, CoAxNN traverses all
available stages and calculates the confidence 𝑒 of corresponding output
at this stage according to Eq. (3) (Lines 7–12). If the confidence (𝑒)
is less than the confidence threshold (𝜀𝑖) of this stage, the prediction
is ended, and the accuracy of the sample at this stage is added to
the accuracy score (𝛿[𝑝]) of the current individual (𝑝) (Lines 13–16).
The accuracy function returns 1 if the prediction is correct, and 0
otherwise. When the sample does not exit from the first 𝜏 − 1 stages,
it must be exited from the 𝜏th stage. Therefore, in the 𝜏th stage, the
accuracy is directly added to the accuracy score (𝛿[𝑝]) (Lines 17–19)."
"The accuracy function returns 1 if the prediction is correct, and 0
otherwise. When the sample does not exit from the first 𝜏 − 1 stages,
it must be exited from the 𝜏th stage. Therefore, in the 𝜏th stage, the
accuracy is directly added to the accuracy score (𝛿[𝑝]) (Lines 17–19).
The evaluation of latency is similar to accuracy. CoAxNN evaluates the
latency score (𝜇[𝑝]) using a similar manner as the accuracy score (𝛿[𝑝]),
which accumulates the latency of the backbone neural network and exit
branches until the end of the prediction (Line 8–10). For the latency,
we test the original network with all possible exit branches attached on
the target edge devices. The execution time of all operators is recorded.
Finally, the average accuracy score (𝛿) and average latency score (𝜇) for
all individuals are obtained (Lines 23–26).

GA-based DSE gets the (near-)optimal solutions about the goal of
accuracy and latency. Users choose the (near-)optimal solution among"
"Finally, the average accuracy score (𝛿) and average latency score (𝜇) for
all individuals are obtained (Lines 23–26).

GA-based DSE gets the (near-)optimal solutions about the goal of
accuracy and latency. Users choose the (near-)optimal solution among
them according to their requirements. If the accuracy requirement is
high, the model with the least computation cost is selected under a triv-
ial accuracy loss. If a certain accuracy loss can be tolerated, the model
with greatly less computation cost is selected. Finally, unavailable
branches and unimportant filters are removed to obtain an optimized
neural network model.

4. Evaluation

4.1. Experimental setting

end

end

end

Evaluation Platforms. We conduct optimization with PaddlePaddle,2
an open-sourced deep learning framework, for neural network models
on a server with Intel Xeon CPUs and an Nvidia A100 GPU. We evaluate

35 end
36 return  ′;

2 https://www.paddlepaddle.org.cn/en.

JournalofSystemsArchitecture143(2023)1029786G. Li et al."
"an open-sourced deep learning framework, for neural network models
on a server with Intel Xeon CPUs and an Nvidia A100 GPU. We evaluate

35 end
36 return  ′;

2 https://www.paddlepaddle.org.cn/en.

JournalofSystemsArchitecture143(2023)1029786G. Li et al.

Algorithm 2: Performance Collection

Input: test data: , the number of stages: 𝜏, chromosomes: 𝑃
Output: accuracy for each configuration of neural network
models: 𝛿, latency for each configuration of neural
network models: 𝜇

1 for 𝑝 = 1 → 𝑃 .𝑠𝑖𝑧𝑒() do

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

𝛿[𝑝] ← 0;
𝜇[𝑝] ← 0;
𝑛𝑒𝑡 = getModel(𝑃 [𝑝]);
foreach (𝑖𝑛𝑝𝑢𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡) ∈  do
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑛𝑒𝑡.forward(𝑖𝑛𝑝𝑢𝑡);
for 𝑖 = 1 → 𝜏 do

𝜇[𝑝] += computeLatency(
if P[p][i] is available then

𝑖);

𝜇[𝑝] += computeLatency(⋃𝑖
if 𝑖 ≠ 𝜏 then



𝑗 );

𝑗=1

𝑒 ← Compute entropy of 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖];
if 𝑒 < 𝜀𝑖 then

𝛿[𝑝] += accuracy(𝑜𝑢𝑡𝑝𝑢𝑡[𝑖], 𝑡𝑎𝑟𝑔𝑒𝑡);
break;

end

else

𝛿[𝑝] += accuracy(𝑜𝑢𝑡𝑝𝑢𝑡[𝑖], 𝑡𝑎𝑟𝑔𝑒𝑡);

end

end

end

end
𝛿[𝑝] = 𝛿[𝑝]∕.𝑠𝑖𝑧𝑒();"
"𝜇[𝑝] += computeLatency(
if P[p][i] is available then

𝑖);

𝜇[𝑝] += computeLatency(⋃𝑖
if 𝑖 ≠ 𝜏 then



𝑗 );

𝑗=1

𝑒 ← Compute entropy of 𝑜𝑢𝑡𝑝𝑢𝑡[𝑖];
if 𝑒 < 𝜀𝑖 then

𝛿[𝑝] += accuracy(𝑜𝑢𝑡𝑝𝑢𝑡[𝑖], 𝑡𝑎𝑟𝑔𝑒𝑡);
break;

end

else

𝛿[𝑝] += accuracy(𝑜𝑢𝑡𝑝𝑢𝑡[𝑖], 𝑡𝑎𝑟𝑔𝑒𝑡);

end

end

end

end
𝛿[𝑝] = 𝛿[𝑝]∕.𝑠𝑖𝑧𝑒();
𝜇[𝑝] = 𝜇[𝑝]∕.𝑠𝑖𝑧𝑒();

25 end
26 return (𝛿, 𝜇);

the realistic speedup and energy consumption of optimized models on
a representative intelligent edge platform, Jetson AGX Orin, integrated
with Ampere GPUs and Arm Cortex CPUs. For the genetic algorithm,
we adopted the OpenGA [34] and the NSGA-III [35].

Benchmark Datasets and Models. We demonstrate the effectiveness
of our proposed method on the CIFAR [36] dataset and the CINIC-
10 [37] dataset. The CIFAR dataset, which consists of 50,000 images for
training and 10,000 images for testing, contains two datasets: CIFAR-10
and CIFAR-100. The CIFAR-10 and CIFAR-100 datasets are categorized
into 10 and 100 classes, respectively. CINIC-10 consisting of 27 000"
"10 [37] dataset. The CIFAR dataset, which consists of 50,000 images for
training and 10,000 images for testing, contains two datasets: CIFAR-10
and CIFAR-100. The CIFAR-10 and CIFAR-100 datasets are categorized
into 10 and 100 classes, respectively. CINIC-10 consisting of 27 000
images is split into three equal-sized train, validation, and test subsets
and is categorized into 10 classes. We adopt the state-of-the-art residual
neural network (ResNet) [1], which has less redundancy and is more
challenging to be compressed and accelerated than conventional model
structures, as model architectures. ResNet-20/32/56/110 models are
evaluated for the CIFAR-10 dataset, ResNet-56/110 models are evalu-
ated for the CIFAR-100 dataset and ResNet-18/50 models are evaluated
for the CINIC-10 dataset.

Hyper-parameters Setting. For staging-based approximation, we at-
tach exit branches after each residual block by default for building a
multi-stage model, and the weight of the loss function of each stage is"
"for the CINIC-10 dataset.

Hyper-parameters Setting. For staging-based approximation, we at-
tach exit branches after each residual block by default for building a
multi-stage model, and the weight of the loss function of each stage is
set to 1.0 by default. For pruning-based approximation, we follow the
same data argumentation strategies and scheduling settings as [1].

4.2. GA-based design space exploration

The GA-based DSE, taking increasing accuracy and reducing latency
as the goal, evaluates and sorts the solutions in the design space, and
obtains the (near-)optimal solutions about accuracy and latency after
multiple generations of individuals. After the process of survival of

the fittest for multiple generations of individuals, the (near-)optimal
solutions about accuracy and latency are obtained.

Fig. 4 shows solutions, obtained by GA-based DSE, for ResNet-20,
ResNet-32, ResNet-56, and ResNet-110 on the CIFAR-10 dataset. The
𝑥-axis and 𝑦-axis represent the normalized top-1 accuracy and latency,"
"solutions about accuracy and latency are obtained.

Fig. 4 shows solutions, obtained by GA-based DSE, for ResNet-20,
ResNet-32, ResNet-56, and ResNet-110 on the CIFAR-10 dataset. The
𝑥-axis and 𝑦-axis represent the normalized top-1 accuracy and latency,
normalized to the top-1 accuracy and latency of the corresponding
baseline model, respectively. The data, marked by the green dot, are
the design points of the brute-force algorithm, and the data, marked
by the red triangle, are the (near-)optimal results found by CoAxNN.
The optimal solutions found by brute force are plotted by the boundary
of the green and red regions. It can be observed that the (near-
)optimal solutions searched by CoAxNN are close to this boundary,
which demonstrates the effectiveness of CoAxNN. Therefore, CoAxNN
can search for the model having the least computational cost in most
cases and meeting the accuracy requirements by GA-based DSE.

4.3. Performance of optimized models"
"which demonstrates the effectiveness of CoAxNN. Therefore, CoAxNN
can search for the model having the least computational cost in most
cases and meeting the accuracy requirements by GA-based DSE.

4.3. Performance of optimized models

We compare CoAxNN with state-of-the-art optimization methods
such as ASRFP [38]. For the sake of fairness, the accuracy numbers
are directly cited from their original papers. Different hyperparameters,
such as learning rate, are used by distinct optimization methods, so the
accuracy of the baseline model may be slightly different. Therefore,
both the accuracy of the baseline model and the optimized model
are shown in our experimental results, and ‘‘ACC. Drop’’ is used to
represent the accuracy dropping of the model after optimization. A
smaller number of ‘‘ACC. Drop’’ is better, and a negative number
indicates the optimized model has higher accuracy than the baseline
model. This is because model optimization has a regularization effect,"
"represent the accuracy dropping of the model after optimization. A
smaller number of ‘‘ACC. Drop’’ is better, and a negative number
indicates the optimized model has higher accuracy than the baseline
model. This is because model optimization has a regularization effect,
which can reduce the overfitting of neural network models [2,18]. To
avoid interference, we run each experiment three times and report the
mean and standard deviation (mean ±std) of accuracy. Besides, we
employ FLOPs to quantify the computational costs of neural network
models.

4.3.1. ResNets on CIFAR-10

Table 1 shows the accuracy and FLOPs of ResNet-20/32/56/110 on
the CIFAR-10 dataset. CoAxNN reduces the computational complexity
of the original neural network model while meeting the accuracy
requirements. The optimized ResNet-20, ResNet-32, ResNet-56, and
ResNet-110 by CoAxNN achieves the FLOPs reduction from 4.06E7,
6.89E7, 1.25E8, 2.53E8 (refer to Table 2) to 3.00E7, 4.89E7, 8.06E7,"
"of the original neural network model while meeting the accuracy
requirements. The optimized ResNet-20, ResNet-32, ResNet-56, and
ResNet-110 by CoAxNN achieves the FLOPs reduction from 4.06E7,
6.89E7, 1.25E8, 2.53E8 (refer to Table 2) to 3.00E7, 4.89E7, 8.06E7,
1.63E8, reduced by 25.94%, 28.93%, 35.76%, 35.57% in computa-
tional complexity, with the accuracy loss of 0.67%, 0.84%, 0.74%, and
0.63%, respectively. Moreover, CoAxNN can exploit less computation
to achieve top-1 accuracy that is comparable to other state-of-the-art
model optimization methods. For example, ResNet-20 optimized by
SFP demands the computational complexity of 2.43E7 FLOPs while
reducing the top-1 accuracy by 1.37%. The optimized ResNet-20 by
CoAxNN consumes less computation cost, i.e., 2.27E7 FLOPs, drops by
1.39% in top-1 accuracy. CoAxNN reduces the computational cost of
ResNet-32 to 3.44E7 FLOPs with a 1.58% accuracy drop. MIL spends
more computations (4.70E7 FLOPs), reducing the top-1 accuracy by"
"CoAxNN consumes less computation cost, i.e., 2.27E7 FLOPs, drops by
1.39% in top-1 accuracy. CoAxNN reduces the computational cost of
ResNet-32 to 3.44E7 FLOPs with a 1.58% accuracy drop. MIL spends
more computations (4.70E7 FLOPs), reducing the top-1 accuracy by
1.59%. The compressed ResNet-56 by SFP achieves the FLOPs reduction
of 52.60% and the accuracy loss of 1.33%. CoAxNN decreases the
computational cost of ResNet-56 by 54.88% with a 1.22% accuracy
drop. The optimized ResNet-110 by GAL reduces FLOPs by 48.50% with
a 0.81% drop in top-1 accuracy. CoAxNN achieves a similar accuracy
loss (0.88%) while reducing the computational complexity by 62.09%.
For original neural network models, CoAxNN automatically searches
for a reasonable configuration to effectively optimize the computational
complexity while meeting the accuracy requirements. For the same ac-
curacy requirement, CoAxNN reduces more computations than existing
methods, achieving less resource consumption."
"for a reasonable configuration to effectively optimize the computational
complexity while meeting the accuracy requirements. For the same ac-
curacy requirement, CoAxNN reduces more computations than existing
methods, achieving less resource consumption.

We also analyze the FLOPs and the percentage of predicted images
for different stages of optimized ResNet-20, ResNet-32, ResNet-56,

JournalofSystemsArchitecture143(2023)1029787G. Li et al.

Fig. 4. The solutions with GA-based DSE on the CIFAR-10 dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Performance of optimized neural network models on CIFAR-10 (see [39–43]).

Model

Method

Top-1 Acc.
Baseline (%)

Top-1 Acc.
Accelerated (%)

Top-1 Acc.
Drop (%)

ResNet-20

ResNet-32

ResNet-56

ResNet-110

MIL [39]
SFP [2]
FPGM [40]
TAS [41]
CoAxNN (0.67%)
CoAxNN (1.39%)

MIL [39]
SFP [2]
TAS [41]
CoAxNN (0.84%)
CoAxNN (1.58%)

SFP [2]
ASFP [8]
CP [42]
AMC [29]"
"Model

Method

Top-1 Acc.
Baseline (%)

Top-1 Acc.
Accelerated (%)

Top-1 Acc.
Drop (%)

ResNet-20

ResNet-32

ResNet-56

ResNet-110

MIL [39]
SFP [2]
FPGM [40]
TAS [41]
CoAxNN (0.67%)
CoAxNN (1.39%)

MIL [39]
SFP [2]
TAS [41]
CoAxNN (0.84%)
CoAxNN (1.58%)

SFP [2]
ASFP [8]
CP [42]
AMC [29]
CoAxNN (0.74%)
CoAxNN (1.22%)

SFP [2]
ASRFP [38]
TAS [41]
GAL [43]
CoAxNN (0.63%)
CoAxNN (0.88%)

92.49
92.20
92.20
92.88
92.68
92.68

92.33
92.63
93.89
93.56
93.56

93.59
93.59
92.8
92.8
94.15
94.15

93.68
94.33
94.97
93.26
94.42
94.42

91.43
90.83
91.09
90.97
92.01 (±0.43)
91.29 (±0.26)

90.74
90.08
91.48
92.72 (±0.13)
91.98 (±0.41)

92.26
92.44
90.9
91.9
93.41 (±0.05)
92.93 (±0.25)

92.90
93.69
94.33
92.74
93.79 (±0.36)
93.54 (±0.17)

1.06
1.37
1.11
1.91
0.67
1.39

1.59
2.55
2.41
0.84
1.58

1.33
1.15
1.90
0.90
0.74
1.22

0.78
0.67
0.64
0.81
0.63
0.88

#FLOPs

2.61E7
2.43E7
2.43E7
2.19E7
3.00E7
2.27E7

4.70E7
4.03E7
4.08E7
4.89E7
3.44E7

5.94E7
5.94E7

6.29E7
8.06E7
5.66E7

1.21E8
1.21E8
1.19E8

1.63E8
9.59E7"
"93.54 (±0.17)

1.06
1.37
1.11
1.91
0.67
1.39

1.59
2.55
2.41
0.84
1.58

1.33
1.15
1.90
0.90
0.74
1.22

0.78
0.67
0.64
0.81
0.63
0.88

#FLOPs

2.61E7
2.43E7
2.43E7
2.19E7
3.00E7
2.27E7

4.70E7
4.03E7
4.08E7
4.89E7
3.44E7

5.94E7
5.94E7

6.29E7
8.06E7
5.66E7

1.21E8
1.21E8
1.19E8

1.63E8
9.59E7

FLOPs ↓
(%)

36.00
42.20
42.20
46.20
25.94
44.02

31.20
41.50
41.00
28.93
49.98

52.60
52.60
50.00
50.00
35.76
54.88

52.30
52.30
53.00
48.50
35.57
62.09

and ResNet-110, with an accuracy loss of 0.67%, 0.84%, 0.74%, and
0.63%, respectively, as shown in the Table 2. Weighted average FLOPs
(‘‘Avg. #FLOPs’’) are computed by exit percentage and exit FLOPs for
each stage (e.g., 3.00E7 = 58.71% × 1.93E7 + 41.29% × 4.53E7),
which indicates the average model performance on the entire dataset.
CoAxNN employs distinct stages for different neural network models.
The two stages are used for ResNet-20, and three stages are used
for more complex ResNet-32, ResNet-56, and ResNet-110. The neural"
"which indicates the average model performance on the entire dataset.
CoAxNN employs distinct stages for different neural network models.
The two stages are used for ResNet-20, and three stages are used
for more complex ResNet-32, ResNet-56, and ResNet-110. The neural
network prediction finished at earlier stages costs less computational
effort. Simple images, making up most of the dataset, are predicted by

the first few stages, which reduces the computational complexity while
ensuring accuracy.

Besides, we show the configurations of the optimized models
searched by the GA-based DSE, as shown in Table 3. The pruning rate,
the number of stages, and the position and the threshold for each stage
are reported. For the optimized ResNet-20, the pruning rate is 0, i.e., no
pruning is performed, the number of stages is two, the position of the
first stage is the end of the fourth residual block, the corresponding
threshold is 0.3, and the second stage refers to the backbone neural"
"are reported. For the optimized ResNet-20, the pruning rate is 0, i.e., no
pruning is performed, the number of stages is two, the position of the
first stage is the end of the fourth residual block, the corresponding
threshold is 0.3, and the second stage refers to the backbone neural
network with no confidence threshold since images must be exited from

JournalofSystemsArchitecture143(2023)1029788G. Li et al.

Table 2
Analysis of optimized models on CIFAR-10.

Model (Acc.Drop)

Stages

CoAxNN

Percentage

#FLOPs

Avg. #FLOPs

Baseline

#FLOPs

FLOPs ↓ (%)

ResNet-20
(0.67%)

ResNet-32
(0.84%)

ResNet-56
(0.74%)

ResNet-110
(0.63%)
















1

2

1

2

3

1

2

3

1

2

3

Table 3
Configurations optimized by GA-based DSE for CIFAR-10.

Model (Acc.Drop)

Configurations

ResNet-20
(0.67%)

ResNet-32
(0.84%)

ResNet-56
(0.74%)

ResNet-110
(0.63%)

Rate
Stage
Position
Threshold

Rate
Stage
Position
Threshold

Rate
Stage
Position
Threshold

Rate
Stage
Position
Threshold

0
1
4
0.3

0
1
6
0.09"
"Model (Acc.Drop)

Configurations

ResNet-20
(0.67%)

ResNet-32
(0.84%)

ResNet-56
(0.74%)

ResNet-110
(0.63%)

Rate
Stage
Position
Threshold

Rate
Stage
Position
Threshold

Rate
Stage
Position
Threshold

Rate
Stage
Position
Threshold

0
1
4
0.3

0
1
6
0.09

0
1
10
0.07

0
1
19
0.07

58.71%
41.29%

41.72%
38.78%
19.50%

44.81%
36.79%
18.40%

42.66%
30.93%
26.41%

2



2
11
0.1

2
19
0.08

2
37
0.015

3



3



3



3



the last stage. Although ResNet-32, ResNet-56, and ResNet-110 are all
optimized into three stages with a pruning rate of 0, the position and
threshold of each stage are different. For the optimized ResNet-32, the
threshold is 0.09, 0.1 for each stage where the position is the end of
the 6, 11th residual block of the backbone network, respectively. For
the optimized ResNet-56, the position of three stages is the end of the
10, 19th residual block with the threshold of 0.07, 0.08. The optimized
ResNet-110 uses three-stage with the threshold of 0.07, 0.017, where"
"the 6, 11th residual block of the backbone network, respectively. For
the optimized ResNet-56, the position of three stages is the end of the
10, 19th residual block with the threshold of 0.07, 0.08. The optimized
ResNet-110 uses three-stage with the threshold of 0.07, 0.017, where
the position is the end of the 19, 37th residual block.

4.3.2. ResNets on CIFAR-100

We evaluate CoAxNN on the CIFAR-100 dataset by ResNet-56 and
ResNet-110, as shown in Table 4. Similarly, CoAxNN outperforms other
state-of-the-art methods. For example, the computational complexity of
optimized ResNet-110 by ASFP is 1.82E8 FLOPs, reduced by 28.20%
compared to the original neural network model, leading to a 1.48%
drop in top-1 accuracy. CoAxNN consumes 1.69E8 FLOPs, achieving
a higher computation reduction of 33.34% and a lower accuracy loss
of 1.30%. Although GHFP achieves a lower accuracy drop of 1.10%, it
uses a higher computational complexity of 1.82E8 FLOPs. These results
demonstrate the effectiveness of CoAxNN."
"a higher computation reduction of 33.34% and a lower accuracy loss
of 1.30%. Although GHFP achieves a lower accuracy drop of 1.10%, it
uses a higher computational complexity of 1.82E8 FLOPs. These results
demonstrate the effectiveness of CoAxNN.

In addition, Table 6 shows the configurations of the optimized mod-
els with the accuracy loss of 0.98% and 1.30%, searched by CoAxNN,
on the CIFAR-100 dataset. Despite the optimized ResNet-56 employing
a three-stage and deactivating pruning-based strategy, which is as same
as CIFAR-10, the thresholds are distinct. The optimized ResNet-56 uses
three-stage with the threshold of 0.7 and 0.065. Besides, The optimized
ResNet-110 adopts three-stage with a pruning rate of 0.1.

We also study the FLOPs and the percentage of predicted images of
the optimized model at each stage on CIFAR-100, as shown in Table 5.
CoAxNN uses three stages for the ResNet-56 and the ResNet-110 as

1.93E7
4.53E7

2.88E7
5.59E7
7.83E7

4.76E7
9.36E7
1.35E8

9.01E7
1.79E8
2.62E8

3.00E7

4.06E7"
"We also study the FLOPs and the percentage of predicted images of
the optimized model at each stage on CIFAR-100, as shown in Table 5.
CoAxNN uses three stages for the ResNet-56 and the ResNet-110 as

1.93E7
4.53E7

2.88E7
5.59E7
7.83E7

4.76E7
9.36E7
1.35E8

9.01E7
1.79E8
2.62E8

3.00E7

4.06E7

25.94

4.89E7

6.89E7

28.93

8.06E7

1.25E8

35.76

1.63E8

2.53E8

35.57

1 and 

same as CIFAR-10. But, since the CIFAR-100 is more complex, more
complex models are required, leading to a smaller percentage of images
predicted at 
2 than CIFAR-10. For example, for ResNet-56 on
CIFAR-10, the percentages of predicted images by 
3 are
44.81%, 36.79%, and 18.40%, respectively. For ResNet-56 on CIFAR-
100, the percentages of predicted images by 
3 are 29.67%,
32.85%, and 37.48%, respectively. For both CIFAR-10 and CIFAR-100,
most of the images on the whole dataset are predicted by the first few
stages with less computation. On the CIFAR-100, CoAxNN reduces the"
"100, the percentages of predicted images by 
3 are 29.67%,
32.85%, and 37.48%, respectively. For both CIFAR-10 and CIFAR-100,
most of the images on the whole dataset are predicted by the first few
stages with less computation. On the CIFAR-100, CoAxNN reduces the
FLOPs by 23.93% and 33.34%, with an accuracy drop of 0.98% and
1.30%, for ResNet-56 and ResNet-110, respectively.

2, and 

2, and 

1, 

1, 

4.3.3. ResNets on CINIC-10

We utilize the CINIC-10 dataset, which consists of images from both
CIFAR and ImageNet [46], avoiding the time-consuming process of
model training on the entire ImageNet dataset, to facilitate experiments
for complicated image classification scenarios. We evaluate CoAxNN on
the CINIC-10 dataset by ResNet-18 and ResNet-50 models that are in
line with the model structures on the ImageNet dataset.

Table 7 shows the accuracy and computational cost of optimized
models. For ResNet-18, when the FLOPs are reduced from 5.49E8"
"the CINIC-10 dataset by ResNet-18 and ResNet-50 models that are in
line with the model structures on the ImageNet dataset.

Table 7 shows the accuracy and computational cost of optimized
models. For ResNet-18, when the FLOPs are reduced from 5.49E8
(i.e., the computational cost of the original ResNet-18, refer to Table 8)
to 2.21E8, reduced by 59.80%, the top-1 accuracy is dropped by 1.01%.
If the accuracy requirement is higher, CoAxNN can achieve 0.50%
accuracy loss while reducing the computational complexity by 43.71%
for the ResNet-18. ResNet-50 with a large number of computations is
improved by 0.10% in top-1 accuracy, and the corresponding FLOPs
is reduced from 1.18E9 (i.e., the computational cost of the original
ResNet-50, refer to Table 8) to 4.63E8, reduced by 60.75% in compu-
tational complexity. We compare CoAxNN with state-of-the-art model
optimization methods, FPC [47] and CCPrune [48]. FPC reduces the
computational complexity by 40.48% (7.76E8 FLOPs) while increas-"
"ResNet-50, refer to Table 8) to 4.63E8, reduced by 60.75% in compu-
tational complexity. We compare CoAxNN with state-of-the-art model
optimization methods, FPC [47] and CCPrune [48]. FPC reduces the
computational complexity by 40.48% (7.76E8 FLOPs) while increas-
ing the top-1 accuracy by 1.14% for the ResNet-50 model. CCPrune
increases the top-1 accuracy of the ResNet-50 model by 0.23% with
a computational complexity of 7.44E8 FLOPs. CoAxNN reduces the
computational complexity by 49.73% (5.93E8 FLOPs) with a 0.38%
improvement in top-1 accuracy. By effectively combining stage-based
with pruning-based approximate strategies, CoAxNN achieves better
performance than existing methods.

Moreover, we analyze the FLOPs and predicted images at each stage
for the optimized ResNet-18 and ResNet-50 with a 1.01% and −0.10%
accuracy drop respectively, as shown in Table 8. For the CINIC-10
dataset, both the ResNet-18 and the ResNet-50 use four stages. More"
"Moreover, we analyze the FLOPs and predicted images at each stage
for the optimized ResNet-18 and ResNet-50 with a 1.01% and −0.10%
accuracy drop respectively, as shown in Table 8. For the CINIC-10
dataset, both the ResNet-18 and the ResNet-50 use four stages. More
than 80% of the images are finished in the previous two stages, and
less than 10% of images are predicted in the last stage.

Table 9 shows the configurations of the ResNet-18 and the ResNet-
50. ResNet-18 uses four-stage with thresholds of 0.23, 0.2, and 0.4,
whose position is the end of the 3, 5, and 7th residual block, and the
pruning rate is 0.3. When the sample does not exit from the first few
stages, it must be exited from the last stage. Therefore, the last stage

JournalofSystemsArchitecture143(2023)1029789G. Li et al.

Table 4
Performance of optimized neural network models on CIFAR-100 (see [44,45]).

Model

Method

Top-1 Acc.
Baseline (%)

Top-1 Acc.
Accelerated (%)

Top-1 Acc.
Drop (%)

ResNet-56

ResNet-110

MIL [39]
CoAxNN (0.98%)"
"JournalofSystemsArchitecture143(2023)1029789G. Li et al.

Table 4
Performance of optimized neural network models on CIFAR-100 (see [44,45]).

Model

Method

Top-1 Acc.
Baseline (%)

Top-1 Acc.
Accelerated (%)

Top-1 Acc.
Drop (%)

ResNet-56

ResNet-110

MIL [39]
CoAxNN (0.98%)
CoAxNN (2.36%)

MIL [39]
SFP [2]
ASFP [8]
ASRFP [38]
GHFP [44]
AHSG-HT [45]
CoAxNN (1.30%)
CoAxNN (3.42%)

71.33
72.75
72.75

72.79
74.14
74.39
74.39
74.39
74.46
74.17
74.17

68.37
71.77 (±0.28)
70.39 (±0.11)

70.78
71.28
72.91
73.02
73.29
72.74
72.87 (±0.19)
70.75 (±0.38)

2.96
0.98
2.36

2.01
2.86
1.48
1.37
1.10
1.72
1.30
3.42

#FLOPs

7.63E7
9.55E7
7.46E7

1.73E8
1.21E8
1.82E8
1.82E8
1.82E8

1.69E8
1.15E8

FLOPs ↓
(%)

39.30
23.93
40.53

31.30
52.30
28.20
28.20
28.20
29.30
33.34
54.47

Table 5
Analysis of optimized models on CIFAR-100.

Model (Acc.Drop)

Stages

CoAxNN

Percentage

#FLOPs

Avg. #FLOPs

Baseline

#FLOPs

FLOPs ↓ (%)

ResNet-56
(0.98%)

ResNet-110
(1.30%)


1

2

3

1

2

3

Table 6"
"(%)

39.30
23.93
40.53

31.30
52.30
28.20
28.20
28.20
29.30
33.34
54.47

Table 5
Analysis of optimized models on CIFAR-100.

Model (Acc.Drop)

Stages

CoAxNN

Percentage

#FLOPs

Avg. #FLOPs

Baseline

#FLOPs

FLOPs ↓ (%)

ResNet-56
(0.98%)

ResNet-110
(1.30%)


1

2

3

1

2

3

Table 6
Configurations optimized by GA-based DSE for CIFAR-100.

Model (Acc.Drop)

Configurations

ResNet-56
(0.98%)

ResNet-110
(1.30%)

Rate
Stage
Position
Threshold

Rate
Stage
Position
Threshold

0
1
10
0.7

0.1
1
19
0.73

29.67%
32.85%
37.48%

27.60%
30.18%
42.22%

2
19
0.65

2
37
0.62

3



3



has no threshold value. The ResNet-34 uses four-stage with thresholds
of 0.08, 0.09, and 0.09, whose position is the end of the 4, 8, and 14th
residual block, and the pruning rate is 0.2.

Summary. As shown in Tables 1, 4, and 7, CoAxNN, which auto-
matically finds (near)-optimal configurations for effectively combining
staging-based and pruning-based approximate strategies, is comparable"
"residual block, and the pruning rate is 0.2.

Summary. As shown in Tables 1, 4, and 7, CoAxNN, which auto-
matically finds (near)-optimal configurations for effectively combining
staging-based and pruning-based approximate strategies, is comparable
to the state-of-the-art methods. The staging-based approximate strate-
gies perform adaptive inference for inputs according to conditions at
run-time. The inference of simple input can be terminated with a good
prediction confidence in the earlier stage, thereby avoiding remaining
layerwise computations, so that the overall computation cost can be
significantly reduced. However, the number of model parameters is
still too large to be deployed on mobile devices. The pruning-based
approximate strategies remove the unimportant weights or filters to
gain a thinner model. However, the pruning method lacks the ability
to configure the neural network dynamically, which will miss the
opportunities to optimize the model inference. Based on these previ-"
"approximate strategies remove the unimportant weights or filters to
gain a thinner model. However, the pruning method lacks the ability
to configure the neural network dynamically, which will miss the
opportunities to optimize the model inference. Based on these previ-
ous mentioned optimization principles, CoAxNN automatically finds
(near-)optimal configurations by GA-based DSE, making full use of the
advantages of both, thus achieving efficient model optimization.

4.4. Realistic performance of on-device inference

To demonstrate the realistic speedup and energy savings of our
approximate compressed multi-stage models, we evaluate the perfor-
mance of models on a representative intelligent edge device, Jetson
AGX Orin.

4.76E7
9.36E7
1.35E8

8.23E7
1.59E8
2.32E8

9.55E7

1.25E8

23.93

1.69E8

2.53E8

33.34

For the measurement of inference latency, on the one hand, we pre-
execute each neural network model 10 times to warm up the machine,
and then repeat the single-batch inference 100 times to record the"
"4.76E7
9.36E7
1.35E8

8.23E7
1.59E8
2.32E8

9.55E7

1.25E8

23.93

1.69E8

2.53E8

33.34

For the measurement of inference latency, on the one hand, we pre-
execute each neural network model 10 times to warm up the machine,
and then repeat the single-batch inference 100 times to record the
average execution time to reduce the interference, such as system
initialization. On the other hand, after executing all the operators on
the device we insert synchronous instructions to obtain timestamps,
thus avoiding inaccurate measurements for inference time. Table 10
depicts the inference latency for the optimized ResNet-20, ResNet-
32, ResNet-56, and ResNet-110 by CoAxNN, respectively dropped by
0.67%, 0.84%, 0.74%, and 0.63% in top-1 accuracy on the CIFAR-
10 dataset. The results show that CoAxNN can accelerate ResNet-20,
ResNet-32, ResNet-56, and ResNet-110 models by 1.33×, 1.34×, 1.53×,
and 1.51×, respectively. In general, the larger models can obtain a more
significant speedup."
"0.67%, 0.84%, 0.74%, and 0.63% in top-1 accuracy on the CIFAR-
10 dataset. The results show that CoAxNN can accelerate ResNet-20,
ResNet-32, ResNet-56, and ResNet-110 models by 1.33×, 1.34×, 1.53×,
and 1.51×, respectively. In general, the larger models can obtain a more
significant speedup.

To analyze the energy consumption of optimized models, we use
the jetson-stats3 to monitor the power of the system. We per-
form 10 000 times single-batch inference for ResNet-20, ResNet-32,
ResNet-56, and ResNet-110 on Jetson AGX Orin, and the instantaneous
powers are obtained to multiply the average inference time per image
to compute the energy consumption of models. Table 11 shows the
energy consumption for ResNet-20, ResNet-32, ResNet-56, and ResNet-
110 with the accuracy loss of 0.67%, 0.84%, 0.74%, and 0.63% on
the CIFAR-10 dataset. CoAxNN reduces the energy consumption of
ResNet-20, ResNet-32, ResNet-56, and ResNet-110 by 25.17%, 25.68%,
34.61%, and 33.81%, respectively. The experimental results show that"
"110 with the accuracy loss of 0.67%, 0.84%, 0.74%, and 0.63% on
the CIFAR-10 dataset. CoAxNN reduces the energy consumption of
ResNet-20, ResNet-32, ResNet-56, and ResNet-110 by 25.17%, 25.68%,
34.61%, and 33.81%, respectively. The experimental results show that
the optimized models by CoAxNN can be improved in terms of energy
consumption, and the more complex neural network models can save
more energy.

We also evaluate the realistic speedup and energy reduction of mod-
els optimized by existing filter pruning approaches [2,8,11]. Tables 12
and 13 show the execute latency and energy consumption of single-
batch inference of optimized ResNet-20, ResNet-32, ResNet-56, and
ResNet-110 by filter pruning with the accuracy loss of 2.32%, 1.12%,
0.23%, and 0.10%, on the CIFAR-10 dataset, respectively. Compared
with the baseline models, the optimized models have higher execution
latency and more energy consumption. Although filter pruning can
reduce theoretical computation costs and memory footprint, the opti-"
"0.23%, and 0.10%, on the CIFAR-10 dataset, respectively. Compared
with the baseline models, the optimized models have higher execution
latency and more energy consumption. Although filter pruning can
reduce theoretical computation costs and memory footprint, the opti-
mized models cannot obtain actual acceleration and energy reduction

3 https://pypi.org/project/jetson-stats/.

JournalofSystemsArchitecture143(2023)10297810G. Li et al.

Table 7
Performance of optimized neural network models on CINIC-10.

Model

Method

Top-1 Acc.
Baseline (%)

Top-1 Acc.
Accelerated (%)

Top-1 Acc.
Drop (%)

ResNet-18

ResNet-50

CoAxNN (0.50%)
CoAxNN (1.01%)

FPC [47]
CCPrune [48]
CoAxNN (−0.38%)
CoAxNN (−0.10%)

87.57
87.57

86.63
88.30
88.52
88.52

87.07 (±0.29)
86.56 (±0.43)

87.77
88.53
88.14 (±0.15)
88.62 (±0.34)

0.50
1.01

−1.14
−0.23
−0.38
−0.10

#FLOPs

3.09E8
2.21E8

7.76E8
7.44E8
5.93E8
4.63E8

FLOPs ↓
(%)

43.71
59.80

40.48

49.73
60.75

Table 8
Analysis of optimized models on CINIC-10.

Model (Acc.Drop)"
"86.63
88.30
88.52
88.52

87.07 (±0.29)
86.56 (±0.43)

87.77
88.53
88.14 (±0.15)
88.62 (±0.34)

0.50
1.01

−1.14
−0.23
−0.38
−0.10

#FLOPs

3.09E8
2.21E8

7.76E8
7.44E8
5.93E8
4.63E8

FLOPs ↓
(%)

43.71
59.80

40.48

49.73
60.75

Table 8
Analysis of optimized models on CINIC-10.

Model (Acc.Drop)

Stages

CoAxNN

Percentage

#FLOPs

Avg. #FLOPs

Baseline

#FLOPs

FLOPs ↓ (%)

ResNet-18
(1.01%)

ResNet-50
(−0.10%)


1

2

3

4

1

2

3

4

50.86%
30.96%
13.13%
5.05%

39.90%
41.58%
9.27%
9.26%

1.35E8
2.57E8
3.79E8
4.56E8

2.11E8
4.91E8
8.66E8
1.02E9

2.21E8

5.49E8

59.80

4.63E8

1.18E9

60.75

Table 9
Configurations optimized by GA-based DSE for CINIC-10.

Model (Acc.Drop)

Configurations

ResNet-18
(1.01%)

ResNet-50
(−0.10%)

Rate
Stage
Position
Threshold

Rate
Stage
Position
Threshold

0.3
1
3
0.23

0.2
1
4
0.08

2
5
0.2

2
8
0.09

3
7
0.4

3
14
0.09

4



4



Table 12
Speedups of optimized models by existing pruning approaches [2,8,11] on Jetson AGX
Orin.

Model (Acc.Drop)

Latency (ms)"
"ResNet-50
(−0.10%)

Rate
Stage
Position
Threshold

Rate
Stage
Position
Threshold

0.3
1
3
0.23

0.2
1
4
0.08

2
5
0.2

2
8
0.09

3
7
0.4

3
14
0.09

4



4



Table 12
Speedups of optimized models by existing pruning approaches [2,8,11] on Jetson AGX
Orin.

Model (Acc.Drop)

Latency (ms)

Speedup

Baseline

Filter pruning

ResNet-20
(2.32%)

ResNet-32
(1.12%)

ResNet-56
(0.23%)

ResNet-110
(0.10%)

6.26

9.55

16.89

32.33

8.70

13.73

22.51

42.59

0.72

0.70

0.75

0.76

Table 10
Speedups of optimized models by CoAxNN on Jetson AGX Orin.

Model (Acc.Drop)

Latency (ms)

Speedup

Baseline

CoAxNN

Table 13
Energy reductions of optimized models by existing pruning approaches [2,8,11] on
Jetson AGX Orin.

Model (Acc.Drop)

Energy (mJ)

Reduction

ResNet-20
(0.67%)

ResNet-32
(0.84%)

ResNet-56
(0.74%)

ResNet-110
(0.63%)

6.26

9.55

16.89

32.33

4.69

7.11

11.05

21.4

1.33

1.34

1.53

1.51

ResNet-20
(2.32%)

ResNet-32
(1.12%)

ResNet-56
(0.23%)

ResNet-110
(0.10%)

Baseline

27.89

42.79

76.57"
"Energy (mJ)

Reduction

ResNet-20
(0.67%)

ResNet-32
(0.84%)

ResNet-56
(0.74%)

ResNet-110
(0.63%)

6.26

9.55

16.89

32.33

4.69

7.11

11.05

21.4

1.33

1.34

1.53

1.51

ResNet-20
(2.32%)

ResNet-32
(1.12%)

ResNet-56
(0.23%)

ResNet-110
(0.10%)

Baseline

27.89

42.79

76.57

Filter pruning

45.74

72.47

−63.99%

−69.36%

119.24

−55.73%

146.69

225.34

−53.61%

Table 11
Energy reductions of optimized models by CoAxNN on Jetson AGX Orin.

Model (Acc.Drop)

Energy (mJ)

Reduction

ResNet-20
(0.67%)

ResNet-32
(0.84%)

ResNet-56
(0.74%)

ResNet-110
(0.63%)

Baseline

27.89

42.79

76.57

146.69

CoAxNN

20.87

31.8

50.07

97.10

25.17%

25.68%

34.61%

33.81%

Fig. 5. Accuracy of the optimization model at different stages. ‘‘CoAxNN-ALL’’ and
‘‘CoAxNN-ACT’’ denote the accuracy of the model at each stage on the whole dataset
and on the images that satisfy the activation condition of the corresponding stage,
respectively.

JournalofSystemsArchitecture143(2023)10297811G. Li et al."
"‘‘CoAxNN-ACT’’ denote the accuracy of the model at each stage on the whole dataset
and on the images that satisfy the activation condition of the corresponding stage,
respectively.

JournalofSystemsArchitecture143(2023)10297811G. Li et al.

Fig. 6. Example images predicated correctly at different stages.

Table 14
Overheads of GA-based DSE.

Model

ResNet-20
ResNet-32
ResNet-56
ResNet-110

GA time (s)

Training time (s)

1.15
1.60
1.69
1.46

5472
1813
2720
7712

on Jetson AGX Orin. Therefore, the critical motivation of CoAxNN is to
find a satisfying optimization configuration for practical scenarios.

4.5. Ablation study

Accuracy of CoAxNN models at different stages. We study the accu-
racy of ResNet-56 optimized by CoAxNN at different stages, as shown
in Fig. 5. In ‘‘CoAxNN-ALL’’, the accuracy of the model in the first few
stages is lower than that of the baseline model. As the computational
complexity of the model increases, the accuracy in the later stages"
"racy of ResNet-56 optimized by CoAxNN at different stages, as shown
in Fig. 5. In ‘‘CoAxNN-ALL’’, the accuracy of the model in the first few
stages is lower than that of the baseline model. As the computational
complexity of the model increases, the accuracy in the later stages
gradually converges to that of the baseline model. CoAxNN separates
the prediction of simple and complex images by conditional activation,
allowing simple images to exit from the first few stages and complex
images to exit from the latter stages. In ‘‘CoAxNN-ACT’’, the accuracy
of the first few stages becomes higher and even exceeds that of the
baseline model, which indicates that the first few stages have sufficient
ability to classify simple images. Besides, since complex images are
predicted by the later stages, the accuracy of the last stage of the
optimization model is lower than that of the baseline model.

Visualization results at different stages. Fig. 6 depicts the predicted"
"ability to classify simple images. Besides, since complex images are
predicted by the later stages, the accuracy of the last stage of the
optimization model is lower than that of the baseline model.

Visualization results at different stages. Fig. 6 depicts the predicted
sample images for each stage of optimized ResNet-56 on CIFAR-10.
The samples predicated at stage 
1 are relatively ‘‘easy’’, which have
a small number of objects and clear background, whereas the samples
predicated at stage 
3 are relatively ‘‘hard’’, which have various
objects and complex background. CoAxNN can separate ‘‘easy’’ images
consuming less effort from ‘‘hard’’ ones consuming more computation,
significantly reducing computation costs for neural network models.

2 and 

Overheads of GA-based DSE. We collect the latency of each operator
of the neural network model on the edge device in the profiling phase
beforehand to be used in GA-based search. We perform the model"
"significantly reducing computation costs for neural network models.

2 and 

Overheads of GA-based DSE. We collect the latency of each operator
of the neural network model on the edge device in the profiling phase
beforehand to be used in GA-based search. We perform the model
optimization processes, including model training and GA-based search,
on a server with Intel Xeon CPUs and an Nvidia A100 GPU. The
inference of optimized models is performed on edge devices such as
Jetson AGX Orin. Table 14 shows the times for GA-based search and
the time to train the model once during the model optimization. The
GA-based DSE takes 1–2 s on the CPU platform, which is greatly less
than model training (e.g., ResNet-20 takes 5472 s for training once).
Therefore, the runtime overhead of the GA is negligible.

5. Discussion

Generality. CoAxNN is a generic framework for optimizing on-device
deep learning via model approximation, which can be generalized
to other intelligent tasks such as object detection [49]. In addition,"
"Therefore, the runtime overhead of the GA is negligible.

5. Discussion

Generality. CoAxNN is a generic framework for optimizing on-device
deep learning via model approximation, which can be generalized
to other intelligent tasks such as object detection [49]. In addition,
more approximate strategies such as knowledge distillation [50] can
be integrated into CoAxNN to further optimize neural network models.

Applicability. CoAxNN is system-independent, which not requires spe-
cific software implementations and hardware design support. The op-
timized models by CoAxNN can be directly deployed on the target
platform, especially intelligent edge accelerators. Users can choose
the (near)-optimal model according to the accuracy and performance
requirements of intelligent tasks. Moreover, the time-consuming opti-
mization process can be performed offline on high-performance servers,
achieving efficient fine-tuning.

Limitations. Although CoAxNN shows the advantages of combining"
"requirements of intelligent tasks. Moreover, the time-consuming opti-
mization process can be performed offline on high-performance servers,
achieving efficient fine-tuning.

Limitations. Although CoAxNN shows the advantages of combining
staging-based with pruning-based approximate strategies for model
optimization, there is still room for further improvement. On one hand,
the NSGA-III used in GA-based DSE cannot always find the optimal
solutions for the goals of increasing accuracy and decreasing latency.
We will explore other genetic algorithms such as NPGA [51] for multi-
objective optimization. On the other hand, the fixed-rate filter pruning
strategy is used in CoAxNN. Prior works [11] demonstrated that differ-
ent layers have different sensitives for model accuracy. Setting different
pruning ratios for different layers can potentially further improve the
performance, which will be explored in future studies.

6. Conclusion

In this paper, we proposed an efficient optimization framework,"
"ent layers have different sensitives for model accuracy. Setting different
pruning ratios for different layers can potentially further improve the
performance, which will be explored in future studies.

6. Conclusion

In this paper, we proposed an efficient optimization framework,
CoAxNN, which effectively combines staging-based with pruning-based
approximate strategies for efficient model
inference on resource-
constrained edge devices. Evaluation with state-of-the-art CNN models
demonstrates the effectiveness of CoAxNN, which can significantly im-
prove the performance with trivial accuracy loss. We plan to integrate
more model approximate strategies into CoAxNN in future work.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

JournalofSystemsArchitecture143(2023)10297812G. Li et al."
"The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

JournalofSystemsArchitecture143(2023)10297812G. Li et al.

Acknowledgments

This work is supported by the National Key R&D Program of China
(2021ZD0110101), the National Natural Science Foundation of China
(62232015, 62302479), the China Postdoctoral Science Foundation
(2023M733566), and the CCF-Baidu Open Fund, China."
"Reference [1]: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778."
"Reference [2]: Y. He, G. Kang, X. Dong, Y. Fu, Y. Yang, Soft filter pruning for accelerating
in: Proceedings of the Twenty-Seventh
Intelligence (IJCAI), 2018, pp.

deep convolutional neural networks,
International Joint Conference on Artificial
2234–2240."
"Reference [3]: S.K. Esser, J.L. McKinstry, D. Bablani, R. Appuswamy, D.S. Modha, Learned
step size quantization, in: International Conference on Learning Representations,
2020."
"Reference [4]: Y. Guo, A. Yao, Y. Chen, Dynamic network surgery for efficient dnns,

in:

Advances in Neural Information Processing Systems, Vol. 29, 2016."
"Reference [5]: S. Han, J. Pool, J. Tran, W. Dally, Learning both weights and connections for
efficient neural network, in: Advances in Neural Information Processing Systems,
Vol. 28, 2015."
"Reference [6]: B. Hassibi, D. Stork, Second order derivatives for network pruning: Optimal brain
surgeon, in: Advances in Neural Information Processing Systems, Vol. 5, 1992."
"Reference [7]: B. Hassibi, D.G. Stork, G.J. Wolff, Optimal brain surgeon and general network
pruning, in: IEEE International Conference on Neural Networks, IEEE, 1993, pp.
293–299."
"Reference [8]: Y. He, X. Dong, G. Kang, Y. Fu, C. Yan, Y. Yang, Asymptotic soft filter pruning
for deep convolutional neural networks, IEEE Trans. Cybern. 50 (8) (2019)
3594–3604."
"Reference [9]: G. Li, X. Ma, X. Wang, L. Liu, J. Xue, X. Feng, Fusion-catalyzed pruning for
optimizing deep learning on intelligent edge devices, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 39 (11) (2020) 3614–3626."
"Reference [10]: J.-H. Luo, J. Wu, W. Lin, Thinet: A filter level pruning method for deep neural
network compression, in: Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 5058–5066."
"Reference [11]: G. Li, X. Ma, X. Wang, H. Yue, J. Li, L. Liu, X. Feng, J. Xue, Optimizing deep
neural networks on intelligent edge accelerators via flexible-rate filter pruning,
J. Syst. Archit. (2022) 102431."
"Reference [12]: J. Plochaet, T. Goedemé, Hardware-aware pruning for FPGA deep learning
accelerators, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023, pp. 4481–4489."
"Reference [13]: X. Zhuang, Y. Ge, B. Zheng, Q. Wang, Adversarial network pruning by filter
robustness estimation, in: ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2023, pp. 1–5."
"Reference [14]: Z. Liu, M. Sun, T. Zhou, G. Huang, T. Darrell, Rethinking the value of network
pruning, in: International Conference on Learning Representations (ICLR), 2019."
"Reference [15]: Y. Li, K. Adamczewski, W. Li, S. Gu, R. Timofte, L. Van Gool, Revisiting
random channel pruning for neural network compression, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.
191–201."
"Reference [16]: Y. Li, P. Zhao, G. Yuan, X. Lin, Y. Wang, X. Chen, Pruning-as-search: Efficient
neural architecture search via channel pruning and structural reparameterization,
in: Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, 2022, pp. 3236–3242."
"Reference [17]: Y. Ding, Y. Wu, C. Huang, S. Tang, F. Wu, Y. Yang, W. Zhu, Y. Zhuang, NAP:

Neural architecture search with pruning, Neurocomputing 477 (2022) 85–95."
"Reference [18]: S. Teerapittayanon, B. McDanel, H.-T. Kung, Branchynet: Fast inference via early
exiting from deep neural networks, in: 2016 23rd International Conference on
Pattern Recognition (ICPR), IEEE, 2016, pp. 2464–2469."
"Reference [19]: P. Panda, A. Sengupta, K. Roy, Conditional deep learning for energy-efficient
and enhanced pattern recognition, in: 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE), IEEE, 2016, pp. 475–480."
"Reference [20]: Y. Yang, D. Liu, H. Fang, Y.-X. Huang, Y. Sun, Z.-Y. Zhang, Once for all skip:
efficient adaptive deep neural networks, in: 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE), IEEE, 2022, pp. 568–571."
"Reference [21]: B. Fang, X. Zeng, F. Zhang, H. Xu, M. Zhang, FlexDNN: Input-adaptive on-device
deep learning for efficient mobile vision, in: 2020 IEEE/ACM Symposium on Edge
Computing (SEC), IEEE, 2020, pp. 84–95."
"Reference [22]: Y. Wang, J. Shen, T.-K. Hu, P. Xu, T. Nguyen, R. Baraniuk, Z. Wang, Y. Lin,
Dual dynamic inference: Enabling more efficient, adaptive, and controllable deep
inference, IEEE J. Sel. Top. Sign. Proces. 14 (4) (2020) 623–633."
"Reference [23]: M. Figurnov, M.D. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov, R. Salakhutdi-
nov, Spatially adaptive computation time for residual networks, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.
1039–1048."
"Reference [24]: N.K. Jayakodi, A. Chatterjee, W. Choi, J.R. Doppa, P.P. Pande, Trading-off
accuracy and energy of deep inference on embedded systems: A co-design
approach, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37 (11) (2018)
2881–2893."
"Reference [25]: Z. Liang, Y. Zhou, Dispense mode for inference to accelerate branchynet, in:
2022 IEEE International Conference on Image Processing (ICIP), IEEE, 2022, pp.
1246–1250."
"Reference [26]: J. Jo, G. Kim, S. Kim, J. Park, LoCoExNet: Low-cost early exit network for energy
efficient CNN accelerator design, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. (2023)."
"Reference [27]: K. Park, C. Oh, Y. Yi, Bpnet: branch-pruned conditional neural network for
systematic time-accuracy tradeoff, in: 2020 57th ACM/IEEE Design Automation
Conference (DAC), IEEE, 2020, pp. 1–6."
"Reference [28]: G. Park, Y. Yi, Condnas: neural architecture search for conditional CNNs,

Electronics 11 (7) (2022) 1101."
"Reference [29]: Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, S. Han, Amc: Automl for model
compression and acceleration on mobile devices, in: Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 784–800."
"Reference [30]: Y. Qian, Z. He, Y. Wang, B. Wang, X. Ling, Z. Gu, H. Wang, S. Zeng, W. Swaileh,
Hierarchical threshold pruning based on uniform response criterion, IEEE Trans.
Neural Netw. Learn. Syst. (2023)."
"Reference [31]: K. Wang, D. Zhang, Y. Li, R. Zhang, L. Lin, Cost-effective active learning for deep
image classification, IEEE Trans. Circuits Syst. Video Technol. 27 (12) (2016)
2591–2600."
"Reference [32]: S. Anwar, K. Hwang, W. Sung, Structured pruning of deep convolutional neural

networks, ACM J. Emerg. Technol. Comput. Syst. (JETC) 13 (3) (2017) 1–18."
"Reference [33]: J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications To Biology, Control, and Artificial Intelligence, MIT
Press, 1992."
"Reference [34]: A. Mohammadi, H. Asadi, S. Mohamed, K. Nelson, S. Nahavandi, OpenGA, a C++
genetic algorithm library, in: 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), IEEE, 2017, pp. 2051–2056."
"Reference [35]: K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2013) 577–601."
"Reference [36]: A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny

images, 2009."
"Reference [37]: L.N. Darlow, E.J. Crowley, A. Antoniou, A.J. Storkey, Cinic-10 is not imagenet

or cifar-10, 2018, arXiv preprint arXiv:1810.03505."
"Reference [38]: L. Cai, Z. An, C. Yang, Y. Xu, Softer pruning, incremental regularization, in:
2020 25th International Conference on Pattern Recognition (ICPR), IEEE, 2021,
pp. 224–230."
"Reference [39]: X. Dong, J. Huang, Y. Yang, S. Yan, More is less: A more complicated network
in: Proceedings of the IEEE Conference on

with less inference complexity,
Computer Vision and Pattern Recognition, 2017, pp. 5840–5848."
"Reference [40]: Y. He, P. Liu, Z. Wang, Z. Hu, Y. Yang, Filter pruning via geometric median
for deep convolutional neural networks acceleration,
in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
4340–4349."
"Reference [41]: X. Dong, Y. Yang, Network pruning via transformable architecture search, Adv.

Neural Inf. Process. Syst. 32 (2019)."
"Reference [42]: Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep neural
networks, in: Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 1389–1397."
"Reference [43]: S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, D. Doermann,
Towards optimal structured cnn pruning via generative adversarial
learning,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2790–2799."
"Reference [44]: L. Cai, Z. An, C. Yang, Y. Xu, Soft and hard filter pruning via dimension
reduction, in: 2021 International Joint Conference on Neural Networks (IJCNN),
IEEE, 2021, pp. 1–8."
"Reference [45]: X. Yang, H. Lu, H. Shuai, X.-T. Yuan, Pruning convolutional neural networks
via stochastic gradient hard thresholding, in: Pattern Recognition and Computer
Vision: Second Chinese Conference, PRCV 2019, Xi’an, China, November 8–11,
2019, Proceedings, Part I, Springer, 2019, pp. 373–385."
"Reference [46]: O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale visual recognition
challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252."
"Reference [47]: Y. Chen, X. Wen, Y. Zhang, Q. He, FPC: Filter pruning via the contribution
of output feature map for deep convolutional neural networks acceleration,
Knowl.-Based Syst. 238 (2022) 107876."
"Reference [48]: Y. Chen, X. Wen, Y. Zhang, W. Shi, CCPrune: Collaborative channel pruning for

learning compact convolutional networks, Neurocomputing 451 (2021) 35–45."
"Reference [49]: X. Chen, H. Ma, J. Wan, B. Li, T. Xia, Multi-view 3d object detection network
for autonomous driving, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 1907–1915."
"Reference [50]: G. Hinton, O. Vinyals, J. Dean, et al., Distilling the knowledge in a neural

network, arXiv preprint arXiv:1503.02531 2 (7) (2015)."
"Reference [51]: J. Horn, N. Nafpliotis, D.E. Goldberg, Multiobjective optimization using the

niched Pareto genetic algorithm, 1993"