Datasets:
Tasks:
Visual Question Answering
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
License:
File size: 13,609 Bytes
de70fb3 7d16fe6 de70fb3 7d16fe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import os
import pandas as pd
import numpy as np
from ast import literal_eval
from SPARQLWrapper import SPARQLWrapper, JSON
from tqdm import tqdm
from urllib.parse import urlparse
import requests
import re
from ast import literal_eval
from PIL import Image
import math
from tqdm import tqdm
tqdm.pandas()
from dotenv import load_dotenv
load_dotenv()
DATA_DIR = os.environ['DATA_DIR']
replacements = {"celebs":"the subject of this image",
"brands":"the brand in this image",
"landmarks":"the place in this image",
"paintings":"the painting in this image",
}
def best_obj_type(obj_types):
if type(obj_types) == str:
obj_types = literal_eval(obj_types)
prioritized_obj_types = ["city", "capital city", 'metropolis', 'country', 'occupation', 'language', 'type of sport', 'music genre'] # 'cinematic technique', 'team sport'
for ot in prioritized_obj_types:
if ot in obj_types:
return ot
for ot_ in obj_types:
if "university" in ot_:
return "university"
if "city" in ot_:
return "city"
return obj_types[0]
def replace_for_image(row):
replace_with = replacements[row['type']]
return row["template"].replace("[subj]", replace_with)
class SPARQL:
def __init__(self):
self.agent = "'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'"
self.sparql = SPARQLWrapper("https://query.wikidata.org/sparql", agent=self.agent)
self.sparql.setReturnFormat(JSON)
def parse_value(self, value):
parsed_uri = urlparse(value)
if all([parsed_uri.scheme, parsed_uri.netloc]):
return parsed_uri.path.split('/')[-1]
return value
def execute(self, query):
records = []
try:
self.sparql.setQuery(query)
responses = self.sparql.query().convert()
for response in responses['results']['bindings']:
record = {}
for key in response:
record[key] = self.parse_value(response[key]['value'])
records.append(record)
if records == 0:
print("request failed")
except Exception as e:
print(e)
return pd.DataFrame(records)
def add_aliases(df):
def _query(uris):
return f'''
SELECT ?s_uri ?alias
WHERE {{
{{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
?s_uri skos:altLabel ?alias.
FILTER(LANG(?alias) = "en")
}}
'''
sparql = SPARQL()
uris = list(set(df["s_uri"].tolist()))
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
aliases = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
aliases = aliases.groupby("s_uri")["alias"].agg(list).reset_index(name="aliases")
res = pd.merge(df, aliases, how='left', on='s_uri')
res['aliases'] = res['aliases'].fillna('[]')
return res
def get_aliases(df):
def _query(uris):
return f'''
SELECT ?uri ?alias
WHERE {{
{{VALUES ?uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
?uri skos:altLabel ?alias.
FILTER(LANG(?alias) = "en")
}}
'''
sparql = SPARQL()
uris = list(set(df["s_uri"].tolist()))# + df["a_uri"].tolist()))
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
aliases = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
aliases = aliases.groupby("uri")["alias"].agg(list).reset_index(name="aliases")
return aliases
def add_images(df):
def _query(uris):
return f'''
SELECT ?s_uri ?image
WHERE {{
{{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
?s_uri wdt:P18 ?image .
}}
'''
sparql = SPARQL()
uris = list(set(df["s_uri"].tolist()))
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
images = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
images['image'] = 'http://commons.wikimedia.org/wiki/Special:FilePath/' + images['image']
res = pd.merge(df, images, how='inner', on='s_uri')
return res
def get_attribute(df, attribute_name, attribute_id):
def _query(uris):
return f'''
SELECT ?s_uri ?attribute_name
WHERE {{
{{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
?s_uri wdt:{attribute_id} ?{attribute_name} .
}}
'''
sparql = SPARQL()
uris = list(set(df["s_uri"].tolist()))
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
attributes = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
attributes = attributes.groupby("s_uri")[attribute_name].agg(list).reset_index(name=attribute_name)
res = pd.merge(df, attributes, how='inner', on='s_uri')
return res
def extract_year(timestamp):
parts = timestamp.split('-')
neg = False
if parts[0] == '':
year = parts[1]
neg = True
else:
year = parts[0]
if year.isdigit():
return str(-int(year)) if neg else str(int(year))
return np.nan
def get_all_properties(df):
def _query(relation_ids):
return f'''
SELECT ?item ?itemLabel ?wd ?wdLabel ?ps_ ?ps_Label WHERE {{
VALUES ?item {{
{" ".join([f"wd:{id}" for id in relation_ids])}
}}
?item ?p ?statement .
?statement ?ps ?ps_ .
?wd wikibase:claim ?p .
?wd wikibase:statementProperty ?ps .
SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }}
}}
'''
sparql = SPARQL()
# df = pd.read_csv(origin)
subjects = df["s_uri"].to_list()
subject_chunks = [subjects[i:i+20] for i in range(0, len(subjects), 20)]
df = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(subject_chunks)])
df = df[~df["wdLabel"].str.contains(r"ID|category|template|username|instance of|gallery|article|handle|url|wiki|copyright|classification|website|described|tag|archive|reddit|profile|image|list|file", case=False, na=False)]
tmp = df[(df['wd'] == 'P569') | (df['wd'] == 'P571')].copy()
tmp['ps_Label'] = tmp['ps_Label'].apply(extract_year)
tmp.dropna(subset=['ps_Label'], inplace=True)
tmp['ps_'] = 'Q000'
df = df[~((df['wd'] == 'P569') | (df['wd'] == 'P571'))]
df = df[~df["ps_Label"].str.contains(r'\d', na=False)]
df = df[df["ps_"].apply(lambda s: bool(re.fullmatch(r"Q\d+", s)))]
df = pd.concat([df, tmp])
df = df[["item", "itemLabel", "wd", "wdLabel", "ps_", "ps_Label"]]
df = df.rename(
columns = {
"item": "s_uri",
"itemLabel": "subject",
"wd": "r_uri",
"wdLabel": "relation",
"ps_": "a_uri",
"ps_Label": "attribute",
}
)
return df
def attribute_type(df):
def _query(uris):
return f'''
SELECT ?uri ?typeLabel
WHERE {{
{{VALUES ?uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
?uri wdt:P31 ?type.
SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }}
}}
'''
sparql = SPARQL()
uris = df["a_uri"].drop_duplicates().to_list()
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
a_types = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
a_types = a_types.groupby("uri")["typeLabel"].agg(list).reset_index(name="a_type")
a_types['a_type'] = a_types['a_type'].apply(lambda x: x if type(x) == list else [])
a_types = pd.concat([a_types, pd.DataFrame([{'uri': 'Q000', 'a_type': str(['year'])}])])
return a_types
def get_wikidata_id(name):
url = "https://www.wikidata.org/w/api.php"
params = {
"action": "wbsearchentities",
"format": "json",
"language": "en",
"search": name
}
response = requests.get(url, params=params).json()
if 'search' in response and response['search']:
return response['search'][0]['id']
return None
def add_wikidata_ids(df, name_col="subject"):
df["wikidata_id"] = df[name_col].apply(get_wikidata_id)
return df
def add_unesco_question(base_df):
def _query(qids):
return f"""
SELECT ?item ?itemLabel ?startTime WHERE {{
VALUES ?item {{{' '.join(f'wd:{qid}' for qid in qids)}}}
?item p:P1435 ?heritageStatement.
?heritageStatement ps:P1435 wd:Q9259.
OPTIONAL {{
?heritageStatement pq:P580 ?startTime.
}}
SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }}
}}
"""
sparql = SPARQL()
df = base_df[base_df['type'] == 'landmarks']
subjects = df["s_uri"].to_list()
subject_chunks = [subjects[i:i+20] for i in range(0, len(subjects), 20)]
df = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(subject_chunks)])
df.dropna(subset=['startTime'], inplace=True)
df['startTime'] = df['startTime'].apply(extract_year)
df = df.rename(
columns = {
"item": "s_uri",
"startTime": "attribute",
"itemLabel": "subject",
}
)
df['possible_answers'] = df['attribute'].apply(lambda x: str([x]))
df['r_uri'] = 'P580'
df['relation'] = 'start time'
df['a_uri'] = 'P580'
df['a_type'] = str(['year'])
return df
def aggregate_triplets(base, aliases, relations, attributes, add_unesco=False):
subjects = base[['s_uri']]
relations = relations.merge(subjects, on="s_uri")
aliases = pd.read_csv("data/all_aliases.csv", index_col=0)
if type(aliases.iloc[0]['aliases']) == str:
aliases["aliases"] = aliases["aliases"].apply(lambda x: literal_eval(x))
if type(attributes.iloc[0]['a_type']) == str:
attributes["a_type"] = attributes["a_type"].apply(lambda x: literal_eval(x))
relations = relations.merge(aliases, left_on="a_uri", right_on="uri", how="left")
relations = relations.drop(columns=["uri"])
relations["possible_answers"] = relations['aliases'].apply(lambda x: x if type(x) == list else [])
relations["possible_answers"] = relations.progress_apply(lambda x: x["possible_answers"] + [x["attribute"]], axis=1)
agg_funcs = {col: 'first' for col in relations.columns if col not in ['s_uri', 'r_uri', 'possible_answers']}
agg_funcs['possible_answers'] = sum
relations = relations.groupby(['s_uri', 'r_uri'], as_index=False).agg(agg_funcs)
relations = relations.drop(columns=["aliases"])
relations = relations.merge(attributes, left_on="a_uri", right_on="uri", how="left")
relations = relations.drop(columns=["uri"])
if add_unesco:
unesco = add_unesco_question(base)
relations = pd.concat([relations, unesco])
return relations
def subj_substitute(row):
if row['type'] == 'brands':
return f"the brand {row['subject']}"
if row['type'] == 'paintings':
return f"the painting {row['subject']}"
return row['subject']
def build_prompts(base_df, triplets, templates):
subjects = base_df[["s_uri", "subject"]]
base_df = base_df[["s_uri", "type"]]
triplets = triplets.drop("subject", axis=1)
triplets = triplets.merge(subjects, on=["s_uri"])
triplets = triplets.merge(base_df, on=["s_uri"], how='left')
triplets = triplets.merge(templates[["uri", "template"]], left_on="r_uri", right_on="uri")
triplets = triplets.drop(columns=["uri"])
triplets = triplets.dropna()
query_counts = triplets.drop_duplicates(["s_uri", "r_uri"]).groupby(["s_uri"])["r_uri"].count().reset_index(name="count")
triplets = triplets.merge(query_counts[query_counts["count"] > 1][["s_uri"]], on="s_uri")
triplets["question_for_image"] = triplets.progress_apply(replace_for_image, axis=1)
triplets["question_for_image"] = triplets.progress_apply(lambda row: row["question_for_image"].replace("[obj_type]", best_obj_type(row["a_type"])) if len(row["a_type"]) > 0 else row["question"], axis=1)
triplets["question"] = triplets.progress_apply(lambda row: row["template"].replace("[subj]", subj_substitute(row)), axis=1)
triplets["question"] = triplets.progress_apply(lambda row: row["question"].replace("[obj_type]", best_obj_type(row["a_type"])) if len(row["a_type"]) > 0 else row["question"], axis=1)
triplets = triplets.drop(columns=["template"])
triplets = triplets[['type','subject','question_for_image','question','possible_answers', 'relation', 's_uri', 'r_uri','a_uri','attribute','a_type']]
return triplets
def resize_square(image, size=336, resample=Image.LANCZOS):
"""
Resize an image to a square of the given size, first adding a black background if needed.
image: a Pillow image instance
size: an integer, the desired output size (width and height will be the same)
"""
img_format = image.format
image = image.copy()
size = [size, size]
img_size = image.size
ratio = min(size[0] / img_size[0], size[1] / img_size[1])
new_size = [
int(math.ceil(img_size[0] * ratio)),
int(math.ceil(img_size[1] * ratio))
]
image = image.resize((new_size[0], new_size[1]), resample)
# Make the image square by adding black padding
max_dim = max(image.size)
new_img = Image.new("RGB", (max_dim, max_dim), (0, 0, 0))
new_img.paste(image, ((max_dim - image.size[0]) // 2, (max_dim - image.size[1]) // 2))
# Resize to target size
# new_img = new_img.resize((size, size), resample)
new_img.format = img_format
return new_img |