File size: 6,310 Bytes
50822a7
 
 
 
 
6d7ecde
50822a7
6d7ecde
50822a7
 
 
 
 
 
 
 
 
 
 
 
4c890f2
6588357
 
2e5f1fb
 
 
 
 
 
a100ad9
 
 
 
 
2e5f1fb
 
 
 
a100ad9
 
2e5f1fb
 
 
 
a100ad9
 
 
2e5f1fb
 
 
 
a100ad9
 
 
2e5f1fb
 
 
 
 
 
 
 
6d47201
 
 
2e5f1fb
 
50822a7
 
 
 
 
 
 
c687597
50822a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6588357
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- ar
license:
- mit
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-semeval_2017
- extended|other-astd
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: ArSarcasm
tags:
- sarcasm-detection
dataset_info:
  features:
  - name: dialect
    dtype:
      class_label:
        names:
          '0': egypt
          '1': gulf
          '2': levant
          '3': magreb
          '4': msa
  - name: sarcasm
    dtype:
      class_label:
        names:
          '0': non-sarcastic
          '1': sarcastic
  - name: sentiment
    dtype:
      class_label:
        names:
          '0': negative
          '1': neutral
          '2': positive
  - name: original_sentiment
    dtype:
      class_label:
        names:
          '0': negative
          '1': neutral
          '2': positive
  - name: tweet
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 1829167
    num_examples: 8437
  - name: test
    num_bytes: 458218
    num_examples: 2110
  download_size: 750717
  dataset_size: 2287385
---

# Dataset Card for ArSarcasm

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** [GitHub](https://github.com/iabufarha/ArSarcasm)
- **Paper:** https://www.aclweb.org/anthology/2020.osact-1.5/

### Dataset Summary

ArSarcasm is a new Arabic sarcasm detection dataset.
The dataset was created using previously available Arabic sentiment analysis
datasets ([SemEval 2017](https://www.aclweb.org/anthology/S17-2088.pdf)
and [ASTD](https://www.aclweb.org/anthology/D15-1299.pdf)) and adds sarcasm and
dialect labels to them.

The dataset contains 10,547 tweets, 1,682 (16%) of which are sarcastic.

For more details, please check the paper
[From Arabic Sentiment Analysis to Sarcasm Detection: The ArSarcasm Dataset](https://www.aclweb.org/anthology/2020.osact-1.5/)

### Supported Tasks and Leaderboards

You can get more information about an Arabic sarcasm tasks and leaderboard
[here](https://sites.google.com/view/ar-sarcasm-sentiment-detection/).

### Languages

Arabic (multiple dialects)

## Dataset Structure

### Data Instances

```javascript
{'dialect': 1, 'original_sentiment': 0, 'sarcasm': 0, 'sentiment': 0, 'source': 'semeval', 'tweet': 'نصيحه ما عمرك اتنزل لعبة سوبر ماريو مش زي ما كنّا متوقعين الله يرحم ايامات السيقا والفاميلي #SuperMarioRun'}
```

### Data Fields

- tweet: the original tweet text
- sarcasm: 0 for non-sarcastic, 1 for sarcastic
- sentiment: 0 for negative, 1 for neutral, 2 for positive
- original_sentiment: 0 for negative, 1 for neutral, 2 for positive
- source: the original source of tweet: SemEval or ASTD
- dialect: 0 for Egypt, 1 for Gulf, 2 for Levant, 3 for Magreb, 4 for Modern Standard Arabic (MSA)

### Data Splits

The training set contains 8,437 tweets, while the test set contains 2,110 tweets.

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

The dataset was created using previously available Arabic sentiment analysis datasets (SemEval 2017 and ASTD) and adds sarcasm and dialect labels to them.

#### Who are the source language producers?

SemEval 2017 and ASTD

### Annotations

#### Annotation process

For the annotation process, we used Figure-Eight
crowdsourcing platform. Our main objective was to annotate the
data for sarcasm detection, but due to the challenges imposed by dialectal variations, we decided to add the annotation for dialects. We also include a new annotation for
sentiment labels in order to have a glimpse of the variability and subjectivity between different annotators. Thus, the
annotators were asked to provide three labels for each tweet
as the following:

- Sarcasm: sarcastic or non-sarcastic.
- Sentiment: positive, negative or neutral.
- Dialect: Egyptian, Gulf, Levantine, Maghrebi or Modern Standard Arabic (MSA).

#### Who are the annotators?

Figure-Eight crowdsourcing platform

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

- Ibrahim Abu-Farha
- Walid Magdy

### Licensing Information

MIT

### Citation Information

```
@inproceedings{abu-farha-magdy-2020-arabic,
    title = "From {A}rabic Sentiment Analysis to Sarcasm Detection: The {A}r{S}arcasm Dataset",
    author = "Abu Farha, Ibrahim  and Magdy, Walid",
    booktitle = "Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection",
    month = may,
    year = "2020",
    address = "Marseille, France",
    publisher = "European Language Resource Association",
    url = "https://www.aclweb.org/anthology/2020.osact-1.5",
    pages = "32--39",
    language = "English",
    ISBN = "979-10-95546-51-1",
}
```

### Contributions

Thanks to [@mapmeld](https://github.com/mapmeld) for adding this dataset.