Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Computing with finite sets of numerals. *) | |
(* *) | |
(* (c) Copyright, Clelia Lomuto, Marco Maggesi, 2009. *) | |
(* Distributed with HOL Light under same license terms *) | |
(* *) | |
(* This file provides some conversions that operate on finite sets of *) | |
(* numerals represented as a trie-like structure (here called "ntries"). *) | |
(* *) | |
(* A concrete syntax for ntries is made available after loading this file. *) | |
(* *) | |
(* Examples: *) | |
(* *) | |
(* # NTRIE_REDUCE_CONV `%%(10 1001 3) INTER %%(3 7 10) UNION %%(3 100)`;; *) | |
(* val it : thm = *) | |
(* |- %%(3 10 1001) INTER %%(3 7 10) UNION %%(3 100) = %%(3 10 100) *) | |
(* *) | |
(* NTRIE_REDUCE_CONV *) | |
(* `%%(10 1001 3) INTER %%(3 7 10) SUBSET %%(10 23) UNION %%(3 33)`;; *) | |
(* val it : thm = *) | |
(* |- %%(3 10 1001) INTER %%(3 7 10) SUBSET %%(10 23) UNION %%(3 33) <=> T *) | |
(* *) | |
(* The code in this file is divided into three main parts: *) | |
(* 1. Definitions and theorems. *) | |
(* 2. Syntax extension for ntries. *) | |
(* 3. Rules and conversions. *) | |
(* ========================================================================= *) | |
(* ========================================================================= *) | |
(* First part: Definitions and theorems. *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* Constructors for the ntrie representation of a set of numerals. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE = new_definition `NTRIE s:num->bool = s` | |
and NEMPTY = new_definition `NEMPTY:num->bool = {}` | |
and NZERO = new_definition `NZERO = {_0}` | |
and NNODE = new_definition `NNODE s t = IMAGE BIT0 s UNION IMAGE BIT1 t`;; | |
let NTRIE_RELATIONS = prove | |
(`NNODE NEMPTY NEMPTY = NEMPTY /\ | |
NNODE NZERO NEMPTY = NZERO`, | |
REWRITE_TAC[NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Membership. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_IN = prove | |
(`(!s n. NUMERAL n IN NTRIE s <=> n IN s) /\ | |
(!n. ~(n IN NEMPTY)) /\ | |
(!n. n IN NZERO <=> n = _0) /\ | |
(!s t. _0 IN NNODE s t <=> _0 IN s) /\ | |
(!s t n. BIT0 n IN NNODE s t <=> n IN s) /\ | |
(!s t n. BIT1 n IN NNODE s t <=> n IN t)`, | |
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Inclusion. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_SUBSET = prove | |
(`(!s t. NTRIE s SUBSET NTRIE t <=> s SUBSET t) /\ | |
(!s. NEMPTY SUBSET s) /\ | |
(!s:num->bool. s SUBSET s) /\ | |
~(NZERO SUBSET NEMPTY) /\ | |
(!s t. NNODE s t SUBSET NEMPTY <=> s SUBSET NEMPTY /\ t SUBSET NEMPTY) /\ | |
(!s t. NNODE s t SUBSET NZERO <=> s SUBSET NZERO /\ t SUBSET NEMPTY) /\ | |
(!s t. NZERO SUBSET NNODE s t <=> NZERO SUBSET s) /\ | |
(!s1 s2 t1 t2. | |
NNODE s1 t1 SUBSET NNODE s2 t2 <=> s1 SUBSET s2 /\ t1 SUBSET t2)`, | |
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE; SUBSET; FORALL_IN_UNION; | |
FORALL_IN_IMAGE; FORALL_IN_INSERT] THEN | |
REWRITE_TAC[IN_UNION; IN_IMAGE; IN_INSERT; NOT_IN_EMPTY; ARITH_EQ] THEN | |
SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Equality. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_EQ = prove | |
(`(!s t. NTRIE s = NTRIE t <=> s = t) /\ | |
~(NZERO = NEMPTY) /\ | |
~(NEMPTY = NZERO) /\ | |
(!s t. NNODE s t = NEMPTY <=> s = NEMPTY /\ t = NEMPTY) /\ | |
(!s t. NEMPTY = NNODE s t <=> s = NEMPTY /\ t = NEMPTY) /\ | |
(!s t. NNODE s t = NZERO <=> s = NZERO /\ t = NEMPTY) /\ | |
(!s t. NZERO = NNODE s t <=> s = NZERO /\ t = NEMPTY) /\ | |
(!s1 s2 t1 t2. NNODE s1 t1 = NNODE s2 t2 <=> s1 = s2 /\ t1 = t2)`, | |
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; NTRIE_SUBSET; NEMPTY; NZERO] THEN | |
SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Singleton. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_SING = prove | |
(`(!n. {NUMERAL n} = NTRIE {n}) /\ | |
{_0} = NZERO /\ | |
(!n. {BIT0 n} = if n = _0 then NZERO else NNODE {n} NEMPTY) /\ | |
(!n. {BIT1 n} = NNODE NEMPTY {n})`, | |
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN | |
REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[] THEN SET_TAC[ARITH_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Insertion. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_INSERT = prove | |
(`(!s n. NUMERAL n INSERT NTRIE s = NTRIE (n INSERT s)) /\ | |
_0 INSERT NEMPTY = NZERO /\ | |
_0 INSERT NZERO = NZERO /\ | |
(!s t. _0 INSERT NNODE s t = NNODE (_0 INSERT s) t) /\ | |
(!n. BIT0 n INSERT NZERO = if n = _0 then NZERO else | |
NNODE (n INSERT NZERO) NEMPTY) /\ | |
(!n. BIT1 n INSERT NZERO = NNODE NZERO {n}) /\ | |
(!s t n. BIT0 n INSERT NNODE s t = NNODE (n INSERT s) t) /\ | |
(!s t n. BIT1 n INSERT NNODE s t = NNODE s (n INSERT t))`, | |
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN | |
REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[] THEN SET_TAC[ARITH_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Union. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_UNION = prove | |
(`(!s t. NTRIE s UNION NTRIE t = NTRIE (s UNION t)) /\ | |
(!s. s UNION NEMPTY = s) /\ | |
(!s. NEMPTY UNION s = s) /\ | |
NZERO UNION NZERO = NZERO /\ | |
(!s t. NNODE s t UNION NZERO = NNODE (s UNION NZERO) t) /\ | |
(!s t. NZERO UNION NNODE s t = NNODE (s UNION NZERO) t) /\ | |
(!s t r q. NNODE s t UNION NNODE r q = NNODE (s UNION r) (t UNION q))`, | |
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Intersection. *) | |
(* Warning: rewriting with this theorem generates ntries which are not *) | |
(* "reduced". It has to be used in conjuction with NTRIE_RELATIONS. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_INTER = prove | |
(`(!s t. NTRIE s INTER NTRIE t = NTRIE (s INTER t)) /\ | |
(!s. NEMPTY INTER s = NEMPTY) /\ | |
(!s. s INTER NEMPTY = NEMPTY) /\ | |
NZERO INTER NZERO = NZERO /\ | |
(!s t. NZERO INTER NNODE s t = NZERO INTER s) /\ | |
(!s t. NNODE s t INTER NZERO = NZERO INTER s) /\ | |
(!s1 s2 t1 t2. | |
NNODE s1 t1 INTER NNODE s2 t2 = NNODE (s1 INTER s2) (t1 INTER t2))`, | |
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Deletion. *) | |
(* Warning: rewriting with this theorem generates ntries which are not *) | |
(* "reduced". It has to be used in conjuction with NTRIE_RELATIONS. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_DELETE = prove | |
(`(!s n. NTRIE s DELETE NUMERAL n = NTRIE (s DELETE n)) /\ | |
(!n. NEMPTY DELETE n = NEMPTY) /\ | |
(!n. NZERO DELETE n = if n = _0 then NEMPTY else NZERO) /\ | |
(!s t. NNODE s t DELETE _0 = NNODE (s DELETE _0) t) /\ | |
(!s t n. NNODE s t DELETE BIT0 n = NNODE (s DELETE n) t) /\ | |
(!s t n. NNODE s t DELETE BIT1 n = NNODE s (t DELETE n))`, | |
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN | |
REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[] THEN ASM SET_TAC[ARITH_EQ; ARITH_ZERO]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Disjointedness. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_DISJOINT = prove | |
(`(!s t. DISJOINT (NTRIE s) (NTRIE t) <=> DISJOINT s t) /\ | |
(!s. DISJOINT s NEMPTY) /\ | |
(!s. DISJOINT NEMPTY s) /\ | |
~DISJOINT NZERO NZERO /\ | |
(!s t. DISJOINT NZERO (NNODE s t) <=> DISJOINT s NZERO) /\ | |
(!s t. DISJOINT (NNODE s t) NZERO <=> DISJOINT s NZERO) /\ | |
(!s1 s2 t1 t2. DISJOINT (NNODE s1 t1) (NNODE s2 t2) <=> | |
DISJOINT s1 s2 /\ DISJOINT t1 t2)`, | |
REWRITE_TAC[NTRIE; DISJOINT; GSYM NEMPTY; | |
NTRIE_INTER; INTER_ACI; NTRIE_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Difference. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_DIFF = prove | |
(`(!s t. NTRIE s DIFF NTRIE t = NTRIE (s DIFF t)) /\ | |
(!s. NEMPTY DIFF s = NEMPTY) /\ | |
(!s. s DIFF NEMPTY = s) /\ | |
NZERO DIFF NZERO = NEMPTY /\ | |
(!s t. NZERO DIFF NNODE s t = NZERO DIFF s) /\ | |
(!s t. NNODE s t DIFF NZERO = NNODE (s DIFF NZERO) t) /\ | |
(!s1 t1 s2 t2. NNODE s1 t1 DIFF NNODE s2 t2 = | |
NNODE (s1 DIFF s2) (t1 DIFF t2))`, | |
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Image. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_IMAGE_DEF = new_definition | |
`!f:num->A acc s. NTRIE_IMAGE f acc s = IMAGE f s UNION acc`;; | |
let NTRIE_IMAGE = prove | |
(`(!f:num->A acc. NTRIE_IMAGE f acc NEMPTY = acc) /\ | |
(!f:num->A acc. NTRIE_IMAGE f acc NZERO = f _0 INSERT acc) /\ | |
(!f:num->A acc s t. | |
NTRIE_IMAGE f acc (NNODE s t) = | |
NTRIE_IMAGE (\n. f (BIT1 n)) (NTRIE_IMAGE (\n. f (BIT0 n)) acc s) t)`, | |
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE; NTRIE_IMAGE_DEF] THEN SET_TAC[]);; | |
let IMAGE_EQ_NTRIE_IMAGE = prove | |
(`!f:num->A s. IMAGE f (NTRIE s) = NTRIE_IMAGE (\n. f (NUMERAL n)) {} s`, | |
REWRITE_TAC [NUMERAL; NTRIE; ETA_AX; NTRIE_IMAGE_DEF; UNION_EMPTY]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Constructor and destructor for ntries. *) | |
(* ------------------------------------------------------------------------- *) | |
let [NTRIE_tm; NEMPTY_tm; NZERO_tm; NNODE_tm] = | |
let f = fst o strip_comb o lhs o snd o strip_forall o concl in | |
map f [NTRIE; NEMPTY; NZERO; NNODE];; | |
let mk_nnode = mk_binop NNODE_tm;; | |
let mk_small_ntrie = | |
let rec mk_sing n = | |
if n == 0 then NZERO_tm else | |
let r,d = n mod 2,n / 2 in | |
let tm = mk_sing d in | |
if r == 0 | |
then mk_nnode tm NEMPTY_tm | |
else mk_nnode NEMPTY_tm tm in | |
let rec part ((el,ol) as acc) = | |
function | |
[] -> acc | |
| h::t -> let acc = let r,d = h mod 2,h / 2 in | |
if r = 0 then (d::el,ol) else (el,d::ol) in | |
part acc t in | |
let rec recur = | |
function | |
[] -> NEMPTY_tm | |
| [n] -> mk_sing n | |
| m::(n::_ as t) when n == m -> recur t | |
| s -> let evens,odds = part ([],[]) s in | |
mk_nnode (recur evens) (recur odds) in | |
fun tm -> mk_comb(NTRIE_tm,recur tm);; | |
let mk_ntrie = | |
let rec mk_sing n = | |
if n =/ num_0 then NZERO_tm else | |
let r,d = mod_num n num_2,quo_num n num_2 in | |
let tm = mk_sing d in | |
if r =/ num_0 | |
then mk_nnode tm NEMPTY_tm | |
else mk_nnode NEMPTY_tm tm in | |
let rec part ((el,ol) as acc) = | |
function | |
[] -> acc | |
| h::t -> let acc = let r,d = mod_num h num_2,quo_num h num_2 in | |
if r =/ num_0 then (d::el,ol) else (el,d::ol) in | |
part acc t in | |
let rec recur = | |
function | |
[] -> NEMPTY_tm | |
| [n] -> mk_sing n | |
| m::(n::_ as t) when n =/ m -> recur t | |
| s -> let evens,odds = part ([],[]) s in | |
mk_nnode (recur evens) (recur odds) in | |
fun tm -> mk_comb(NTRIE_tm,recur tm);; | |
(* ========================================================================= *) | |
(* Second part: Syntax extension for ntries. *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* Destructor for ntries. *) | |
(* ------------------------------------------------------------------------- *) | |
let mk_numset tm = mk_setenum(tm,`:num`);; | |
let dest_small_ntrie,dest_ntrie = | |
let ntrie_strip_tag = | |
function | |
Comb(Const("NTRIE",_),tm) -> tm | |
| _ -> failwith "ntrie_strip_tag" in | |
let dest_small_ntrie tm = | |
let rec runk n = | |
function | |
[] -> n | |
| h::t -> let d = 2*n in runk (if h then d+1 else d) t in | |
let rec recur acc k = | |
function | |
Const("NEMPTY",_) -> acc | |
| Const("NZERO",_) -> runk 0 k::acc | |
| Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
recur (recur acc (false::k) stm) (true::k) ttm | |
| _ -> failwith "malformed ntrie" in | |
recur [] [] (ntrie_strip_tag tm) in | |
let dest_ntrie tm = | |
let rec runk n = | |
function | |
[] -> n | |
| h::t -> let d = num_2 */ n in runk (if h then d +/ num_1 else d) t in | |
let rec recur acc k = | |
function | |
Const("NEMPTY",_) -> acc | |
| Const("NZERO",_) -> runk num_0 k::acc | |
| Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
recur (recur acc (false::k) stm) (true::k) ttm | |
| _ -> failwith "malformed ntrie" in | |
recur [] [] (ntrie_strip_tag tm) in | |
dest_small_ntrie,dest_ntrie;; | |
(* ------------------------------------------------------------------------- *) | |
(* Printer. *) | |
(* ------------------------------------------------------------------------- *) | |
let pp_print_ntrie = | |
let print_num fmt n = pp_print_string fmt (string_of_num n) in | |
let print_nums fmt = | |
let rec loop = | |
function | |
[] -> () | |
| h::t -> pp_print_space fmt (); print_num fmt h; loop t | |
in | |
function | |
[] -> () | |
| h::t -> print_num fmt h; loop t in | |
let print fmt tm = | |
let l = sort (</) (dest_ntrie tm) in | |
pp_open_box fmt 0; pp_print_string fmt "%%("; | |
pp_open_box fmt 0; print_nums fmt l; pp_close_box fmt (); | |
pp_print_string fmt ")"; pp_close_box fmt () in | |
fun fmt -> | |
function | |
Comb(Const("NTRIE",_),_) as tm -> print fmt tm | |
| _ -> failwith "print_ntrie";; | |
let print_ntrie = pp_print_ntrie std_formatter | |
and string_of_ntrie = print_to_string pp_print_ntrie;; | |
install_user_printer("ntrie",pp_print_ntrie);; | |
(* ------------------------------------------------------------------------- *) | |
(* Parser. *) | |
(* ------------------------------------------------------------------------- *) | |
reserve_words["%%"];; | |
let preparse_ntrie,parse_ntrie = | |
let NTRIE_ptm = Varp("NTRIE",dpty) | |
and NEMPTY_ptm = Varp("NEMPTY",dpty) | |
and NZERO_ptm = Varp("NZERO",dpty) | |
and NNODE_ptm = Varp("NNODE",dpty) in | |
let pmk_nnode ptm1 ptm2 = Combp(Combp(NNODE_ptm,ptm1),ptm2) in | |
let pmk_ntrie = | |
let rec pmk_sing n = | |
if n =/ num_0 then NZERO_ptm else | |
let r,d = mod_num n num_2,quo_num n num_2 in | |
let tm = pmk_sing d in | |
if r =/ num_0 | |
then pmk_nnode tm NEMPTY_ptm | |
else pmk_nnode NEMPTY_ptm tm in | |
let rec part ((el,ol) as acc) = | |
function | |
[] -> acc | |
| h::t -> let acc = let r,d = mod_num h num_2,quo_num h num_2 in | |
if r = num_0 then (d::el,ol) else (el,d::ol) in | |
part acc t in | |
let rec recur = | |
function | |
[] -> NEMPTY_ptm | |
| [n] -> pmk_sing n | |
| m::(n::_ as t) when n =/ m -> recur t | |
| s -> let evens,odds = part ([],[]) s in | |
pmk_nnode (recur evens) (recur odds) in | |
fun tm -> Combp(NTRIE_ptm,recur tm) in | |
let parse_int = | |
function | |
Ident s::rest -> | |
let n = try num_of_string s with Failure _ -> raise Noparse in | |
n,rest | |
| _ -> raise Noparse in | |
let parse_ints = many parse_int >> pmk_ntrie in | |
let preparse_ntrie = | |
((a(Resword "%%") ++ a(Resword "(") ++ parse_ints) >> snd) ++ | |
a(Resword ")") >> fst in | |
let parse_ntrie s = | |
let ptm,l = (preparse_ntrie o lex o explode) s in | |
if l = [] then term_of_preterm (retypecheck [] ptm) else | |
failwith "Unparsed input following term" in | |
preparse_ntrie,parse_ntrie;; | |
install_parser("ntrie",preparse_ntrie);; | |
(* ========================================================================= *) | |
(* Third part: Rules and conversions. *) | |
(* ========================================================================= *) | |
module Ntrie_conversions = struct | |
(* ------------------------------------------------------------------------- *) | |
(* Basic definitions, handy tools and other preliminaries. *) | |
(* ------------------------------------------------------------------------- *) | |
let Comb(NUMERAL_tm,(Comb(BIT0_tm,Comb(BIT1_tm,zero_tm)))) = | |
lhand(concl TWO) | |
let comb_numeral tm = mk_comb(NUMERAL_tm,tm) | |
let mk_bit0 tm = if tm = zero_tm then tm else mk_comb(BIT0_tm,tm) | |
and mk_bit1 tm = mk_comb(BIT1_tm,tm) | |
and ntrie_ty = type_of NEMPTY_tm | |
let neg_tm = `(~)` | |
and eq_tm = `(=):(num->bool)->(num->bool)->bool` | |
and iff_tm = `(=):bool->bool->bool` | |
and conj_tm = `(/\):bool->bool->bool` | |
and IN_tm = `(IN):num->(num->bool)->bool` | |
and EMPTY_tm = `{}:num->bool` | |
and SUBSET_tm = `(SUBSET):(num->bool)->(num->bool)->bool` | |
and PSUBSET_tm = `(PSUBSET):(num->bool)->(num->bool)->bool` | |
and DISJOINT_tm = `(DISJOINT):(num->bool)->(num->bool)->bool` | |
and INSERT_tm = `(INSERT):num->(num->bool)->(num->bool)` | |
and UNION_tm = `(UNION):(num->bool)->(num->bool)->(num->bool)` | |
and INTER_tm = `(INTER):(num->bool)->(num->bool)->(num->bool)` | |
and DELETE_tm = `(DELETE):(num->bool)->num->(num->bool)` | |
and DIFF_tm = `(DIFF):(num->bool)->(num->bool)->(num->bool)` | |
let [svar;svar1;svar2;tvar;tvar1;tvar2] = | |
map (fun s -> mk_var(s,ntrie_ty)) ["s";"s1";"s2";"t";"t1";"t2"] | |
and nvar = `n:num` | |
let STANDARDIZE = | |
let ilist = | |
map (fun x -> x,x) | |
[NEMPTY_tm; NZERO_tm; NNODE_tm; NTRIE_tm; IN_tm; eq_tm; SUBSET_tm; | |
PSUBSET_tm; DISJOINT_tm; INSERT_tm; UNION_tm; INTER_tm; DELETE_tm; | |
DIFF_tm; neg_tm; iff_tm; conj_tm; BIT0_tm; BIT1_tm; zero_tm; | |
nvar; svar; svar1; svar2; tvar; tvar1; tvar2] in | |
let rec replace tm = | |
match tm with | |
Var(_,_) | Const(_,_) -> rev_assocd tm ilist tm | |
| Comb(s,t) -> mk_comb(replace s,replace t) | |
| Abs(_,_) -> failwith "replace" in | |
fun th -> let tm' = replace (concl th) in EQ_MP (REFL tm') th | |
(* ------------------------------------------------------------------------- *) | |
(* Well-formed (and minimal) ntries. *) | |
(* ------------------------------------------------------------------------- *) | |
let wellformed = | |
let rec visit = | |
function | |
Const("NEMPTY",_) -> () | |
| Const("NZERO",_) -> () | |
| Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
( match stm,ttm with | |
Const("NEMPTY",_),Const("NEMPTY",_) | | |
Const("NZERO",_),Const("NEMPTY",_) -> fail() | |
| _ -> visit stm; visit ttm ) | |
| _ -> fail() in | |
function | |
Comb(Const("NTRIE",_),tm) -> can visit tm | |
| _ -> false | |
(* ------------------------------------------------------------------------- *) | |
(* Membership. *) | |
(* ------------------------------------------------------------------------- *) | |
let NUM_NZ_RULE,NTRIE_ZERO_IN_RULE,NTRIE_CHOOSE_RULE,NTRIE_IN_CONV = | |
let rec NUM_NZ_RULE = | |
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove) | |
(`~(BIT1 n = _0) /\ | |
(~(n = _0) <=> ~(BIT0 n = _0))`, | |
REWRITE_TAC[ARITH_EQ]) in | |
function | |
Comb(Const("BIT1",_),ntm) -> INST [ntm,nvar] pth1 | |
| Comb(Const("BIT0",_),ntm) -> | |
let rth = NUM_NZ_RULE ntm | |
and pth = INST [ntm,nvar] pth2 in | |
EQ_MP pth rth | |
| _ -> failwith "NUM_NZ_RULE" in | |
let [zine_nth;zinx_pth;ine_nth;zinn_pth;pth4;pth5;pth6;pth7] = | |
(CONJUNCTS o STANDARDIZE o prove) | |
(`~(_0 IN NEMPTY) /\ | |
_0 IN NZERO /\ | |
~(n IN NEMPTY) /\ | |
(_0 IN s <=> _0 IN NNODE s t) /\ | |
(n IN s <=> BIT0 n IN NNODE s t) /\ | |
(n IN t <=> BIT1 n IN NNODE s t) /\ | |
~(BIT1 n IN NZERO) /\ | |
(~(n = _0) <=> ~(BIT0 n IN NZERO))`, | |
REWRITE_TAC[NTRIE_IN; ARITH_EQ]) in | |
let [zinn_nth;npth4;npth5] = | |
map (AP_TERM neg_tm) [zinn_pth;pth4;pth5] in | |
let rec NTRIE_ZERO_IN_RULE : term -> bool * thm = | |
function | |
Const("NEMPTY",_) -> false,zine_nth | |
| Const("NZERO",_) -> true,zinx_pth | |
| Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
let b,rth = NTRIE_ZERO_IN_RULE stm in | |
let pth = if b then zinn_pth else zinn_nth in | |
b,EQ_MP (INST [stm,svar; ttm,tvar] pth) rth | |
| _ -> failwith "Malformed ntrie" in | |
let rec NTRIE_CHOOSE_RULE = | |
function | |
Const("NEMPTY",_) -> failwith "Empty ntrie" | |
| Const("NZERO",_) -> zinx_pth | |
| Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
( try let rth = NTRIE_CHOOSE_RULE ttm in | |
let ntm = lhand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth5 in | |
EQ_MP pth rth | |
with Failure _ -> | |
let rth = NTRIE_CHOOSE_RULE stm in | |
let ntm = lhand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth4 in | |
EQ_MP pth rth ) | |
| _ -> failwith "Malformed ntrie" in | |
let NTRIE_IN_CONV : conv = | |
let rec NTRIE_IN_RULE : term * term -> bool * thm = | |
function | |
Const("_0",_),stm -> NTRIE_ZERO_IN_RULE stm | |
| ntm,Const("NEMPTY",_) -> false,INST [ntm,nvar] ine_nth | |
| Comb(Const("BIT1",_),ntm),Const("NZERO",_) -> | |
false,INST [ntm,nvar] pth6 | |
| Comb(Const("BIT0",_),ntm),Const("NZERO",_) -> | |
let rth = NUM_NZ_RULE ntm in | |
false,EQ_MP (INST [ntm,nvar] pth7) rth | |
| Comb(Const("BIT0",_),ntm),Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
let b,rth = NTRIE_IN_RULE(ntm,stm) in | |
let pth = if b then pth4 else npth4 in | |
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth in | |
b,EQ_MP pth rth | |
| Comb(Const("BIT1",_),ntm),Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
let b,rth = NTRIE_IN_RULE(ntm,ttm) in | |
let pth = if b then pth5 else npth5 in | |
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth in | |
b,EQ_MP pth rth | |
| _ -> failwith "NTRIE_IN_RULE" in | |
let NTRIE_IN_CONV : conv = | |
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove) | |
(`(n IN s <=> (NUMERAL n IN NTRIE s <=> T)) /\ | |
(~(n IN s) <=> (NUMERAL n IN NTRIE s <=> F))`, | |
REWRITE_TAC[NUMERAL;NTRIE]) in | |
function | |
Comb(Comb(Const("IN",_),Comb(Const("NUMERAL",_),ntm)), | |
Comb(Const("NTRIE",_),stm)) -> | |
let b,rth = NTRIE_IN_RULE(ntm,stm) in | |
let pth = if b then pth1 else pth2 in | |
EQ_MP (INST [ntm,nvar; stm,svar] pth) rth | |
| _ -> failwith "NTRIE_IN_CONV" in | |
NTRIE_IN_CONV in | |
NUM_NZ_RULE,NTRIE_ZERO_IN_RULE,NTRIE_CHOOSE_RULE,NTRIE_IN_CONV | |
(* ------------------------------------------------------------------------- *) | |
(* Inclusion. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_SUBSET_CONV : conv = | |
let [sub_refl_pth; esube_pth; xsubx_pth; esubx_pth; esub_pth; xsube_nth; | |
sube_nth; xsubn_pth; xsubn_nth; nsubx_pth; nsubx_nth1; nsubx_nth2; | |
nsubn_pth; nsubn_nth1; nsubn_nth2] = | |
(CONJUNCTS o STANDARDIZE o prove) | |
(`s SUBSET s /\ | |
NEMPTY SUBSET NEMPTY /\ | |
NZERO SUBSET NZERO /\ | |
NEMPTY SUBSET NZERO /\ | |
NEMPTY SUBSET t /\ | |
~(NZERO SUBSET NEMPTY) /\ | |
(n IN s ==> ~(s SUBSET NEMPTY)) /\ | |
(NZERO SUBSET s <=> NZERO SUBSET NNODE s t) /\ | |
(~(NZERO SUBSET s) <=> ~(NZERO SUBSET NNODE s t)) /\ | |
(s SUBSET NZERO <=> NNODE s NEMPTY SUBSET NZERO) /\ | |
(~(s SUBSET NZERO) <=> ~(NNODE s NEMPTY SUBSET NZERO)) /\ | |
(n IN t ==> ~(NNODE s t SUBSET NZERO)) /\ | |
(s1 SUBSET s2 /\ t1 SUBSET t2 <=> NNODE s1 t1 SUBSET NNODE s2 t2) /\ | |
(~(s1 SUBSET s2) ==> ~(NNODE s1 t1 SUBSET NNODE s2 t2)) /\ | |
(~(t1 SUBSET t2) ==> ~(NNODE s1 t1 SUBSET NNODE s2 t2))`, | |
SIMP_TAC[NTRIE_SUBSET] THEN REWRITE_TAC[NEMPTY] THEN SET_TAC[]) in | |
let rec NTRIE_NZERO_SUBSET_RULE = | |
function | |
Const("NEMPTY",_) -> false,xsube_nth | |
| Const("NZERO",_) -> true,xsubx_pth | |
| Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
let b,rth = NTRIE_NZERO_SUBSET_RULE stm in | |
let pth = if b then xsubn_pth else xsubn_nth in | |
b,EQ_MP (INST [stm,svar; ttm,tvar] pth) rth | |
| _ -> failwith "Malformed ntrie" in | |
let rec NTRIE_SUBSET_NZERO_RULE = | |
function | |
Const("NEMPTY",_) -> true,esubx_pth | |
| Const("NZERO",_) -> true,xsubx_pth | |
| Comb(Comb(Const("NNODE",_),stm),Const("NEMPTY",_)) -> | |
let b,rth = NTRIE_SUBSET_NZERO_RULE stm in | |
let pth = if b then nsubx_pth else nsubx_nth1 in | |
b,EQ_MP (INST [stm,svar] pth) rth | |
| Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
let rth = NTRIE_CHOOSE_RULE ttm in | |
let ntm = lhand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] nsubx_nth2 in | |
false,MP pth rth | |
| _ -> failwith "Malformed ntrie" in | |
let rec NTRIE_SUBSET_RULE = | |
function | |
Const("NEMPTY",_),Const("NEMPTY",_) -> true,esube_pth | |
| Const("NEMPTY",_),Const("NZERO",_) -> true,esubx_pth | |
| Const("NEMPTY",_),ttm -> true,INST [ttm,tvar] esub_pth | |
| stm,Const("NEMPTY",_) -> | |
let rth = NTRIE_CHOOSE_RULE stm in | |
let ntm = lhand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar] sube_nth in | |
false,MP pth rth | |
| Const("NZERO",_),ttm -> NTRIE_NZERO_SUBSET_RULE ttm | |
| stm,Const("NZERO",_) -> NTRIE_SUBSET_NZERO_RULE stm | |
| stm,ttm when stm = ttm -> true,INST [stm,svar] sub_refl_pth | |
| Comb(Comb(Const("NNODE",_),stm1),ttm1), | |
Comb(Comb(Const("NNODE",_),stm2),ttm2) -> | |
let b1,rth1 = NTRIE_SUBSET_RULE (stm1,stm2) in | |
let pinst = INST[stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in | |
if not b1 then false,MP (pinst nsubn_nth1) rth1 else | |
let b2,rth2 = NTRIE_SUBSET_RULE (ttm1,ttm2) in | |
if not b2 then false,MP (pinst nsubn_nth2) rth2 else | |
true,EQ_MP (pinst nsubn_pth) (CONJ rth1 rth2) | |
| _ -> failwith "Malformed ntrie" in | |
let NTRIE_SUBSET_CONV : conv = | |
let pth_sub_eqt,pth_sub_eqf = (CONJ_PAIR o STANDARDIZE o prove) | |
(`(s SUBSET t <=> (NTRIE s SUBSET NTRIE t <=> T)) /\ | |
(~(s SUBSET t) <=> (NTRIE s SUBSET NTRIE t <=> F))`, | |
REWRITE_TAC[NTRIE]) in | |
function | |
Comb(Comb(Const("SUBSET",_),Comb(Const("NTRIE",_),stm)), | |
Comb(Const("NTRIE",_),ttm)) -> | |
let b,rth = NTRIE_SUBSET_RULE(stm,ttm) in | |
let pth = if b then pth_sub_eqt else pth_sub_eqf in | |
EQ_MP (INST [stm,svar; ttm,tvar] pth) rth | |
| _ -> failwith "NTRIE_SUBSET_CONV" in | |
NTRIE_SUBSET_CONV | |
(* ------------------------------------------------------------------------- *) | |
(* Equality. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_EQ_CONV : conv = | |
let [eq_refl_pth;eeqe_pth;xeqx_pth;eeqx_nth;xeqe_nth;eqe_nth;eeq_nth; | |
eqx_nth1;eqx_nth2;neqn_pth;neqn_nth1;neqn_nth2] = | |
(CONJUNCTS o STANDARDIZE o prove) | |
(`s = s /\ | |
NEMPTY = NEMPTY /\ | |
NZERO = NZERO /\ | |
~(NEMPTY = NZERO) /\ | |
~(NZERO = NEMPTY) /\ | |
(n IN s ==> ~(s = NEMPTY)) /\ | |
(n IN t ==> ~(NEMPTY = t)) /\ | |
(~(n = _0) ==> n IN s ==> ~(s = NZERO)) /\ | |
(~(n = _0) ==> n IN t ==> ~(NZERO = t)) /\ | |
(s1 = s2 /\ t1 = t2 <=> NNODE s1 t1 = NNODE s2 t2) /\ | |
(~(s1 = s2) ==> ~(NNODE s1 t1 = NNODE s2 t2)) /\ | |
(~(t1 = t2) ==> ~(NNODE s1 t1 = NNODE s2 t2))`, | |
SIMP_TAC[NTRIE_EQ] THEN SET_TAC[NEMPTY; NZERO]) in | |
let rec NTRIE_EQ_RULE = | |
function | |
Const("NEMPTY",_),Const("NEMPTY",_) -> true,eeqe_pth | |
| Const("NZERO",_),Const("NZERO",_) -> true,xeqx_pth | |
| Const("NEMPTY",_),Const("NZERO",_) -> false,eeqx_nth | |
| Const("NZERO",_),Const("NEMPTY",_) -> false,xeqe_nth | |
| stm,Const("NEMPTY",_) -> | |
let rth = NTRIE_CHOOSE_RULE stm in | |
let ntm = lhand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar] eqe_nth in | |
false,MP pth rth | |
| Const("NEMPTY",_),ttm -> | |
let rth = NTRIE_CHOOSE_RULE ttm in | |
let ntm = lhand(concl rth) in | |
let pth = INST [ntm,nvar; ttm,tvar] eeq_nth in | |
false,MP pth rth | |
| stm,Const("NZERO",_) -> | |
let rth = NTRIE_CHOOSE_RULE stm in | |
let ntm = lhand(concl rth) in | |
let zth = NUM_NZ_RULE ntm in | |
let pth = INST [ntm,nvar; stm,svar] eqx_nth1 in | |
false,MP (MP pth zth) rth | |
| Const("NZERO",_),ttm -> | |
let rth = NTRIE_CHOOSE_RULE ttm in | |
let ntm = lhand(concl rth) in | |
let zth = NUM_NZ_RULE ntm in | |
let pth = INST [ntm,nvar; ttm,tvar] eqx_nth2 in | |
false,MP (MP pth zth) rth | |
| stm,ttm when stm = ttm -> true,INST [stm,svar] eq_refl_pth | |
| Comb(Comb(Const("NNODE",_),stm1),ttm1), | |
Comb(Comb(Const("NNODE",_),stm2),ttm2) -> | |
let b1,rth1 = NTRIE_EQ_RULE(stm1,stm2) in | |
let pinst = INST[stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in | |
if not b1 then false,MP (pinst neqn_nth1) rth1 else | |
let b2,rth2 = NTRIE_EQ_RULE(ttm1,ttm2) in | |
if not b2 then false,MP (pinst neqn_nth2) rth2 else | |
failwith "Malformed ntrie" | |
| _ -> failwith "Malformed ntrie" in | |
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove) | |
(`(s = t <=> (NTRIE s = NTRIE t <=> T)) /\ | |
(~(s = t) <=> (NTRIE s = NTRIE t <=> F))`, | |
REWRITE_TAC[NTRIE]) in | |
function | |
Comb(Comb(Const("=",_),Comb(Const("NTRIE",_),stm)), | |
Comb(Const("NTRIE",_),ttm)) -> | |
let b,rth = NTRIE_EQ_RULE(stm,ttm) in | |
let pth = if b then pth1 else pth2 in | |
EQ_MP (INST [stm,svar; ttm,tvar] pth) rth | |
| _ -> failwith "NTRIE_SUBSET_CONV" | |
(* ------------------------------------------------------------------------- *) | |
(* Singleton. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_SING_RULE,NTRIE_SING_CONV = | |
let [pth0;pth1;pth2;pth3] = (CONJUNCTS o STANDARDIZE o prove) | |
(`({n} = s <=> ({NUMERAL n} = NTRIE s)) /\ | |
({_0} = NZERO) /\ | |
({n} = s ==> {BIT0 n} = NNODE s NEMPTY) /\ | |
({n} = s <=> {BIT1 n} = NNODE NEMPTY s)`, | |
REWRITE_TAC[NTRIE_SING; NTRIE; NTRIE_EQ] THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[NTRIE_EQ] THEN MESON_TAC[NZERO]) in | |
let rec NTRIE_SING_RULE = | |
function | |
Const("_0",_) -> pth1 | |
| Comb(Const("BIT0",_),ntm) -> | |
let rth = NTRIE_SING_RULE ntm in | |
let stm = rand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar] pth2 in | |
MP pth rth | |
| Comb(Const("BIT1",_),ntm) -> | |
let rth = NTRIE_SING_RULE ntm in | |
let stm = rand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar] pth3 in | |
EQ_MP pth rth | |
| _ -> failwith "Malformed numeral" in | |
let NTRIE_SING_CONV : conv = | |
function | |
Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)), | |
Const("EMPTY",_)) -> | |
let rth = NTRIE_SING_RULE ntm in | |
let stm = rand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar] pth0 in | |
EQ_MP pth rth | |
| _ -> failwith "NTRIE_SING_CONV" in | |
NTRIE_SING_RULE,NTRIE_SING_CONV | |
(* ------------------------------------------------------------------------- *) | |
(* Insertion. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_INSERT_RULE,NTRIE_INSERT_CONV = | |
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8] = | |
(CONJUNCTS o STANDARDIZE o prove) | |
(`(n INSERT s = t <=> NUMERAL n INSERT NTRIE s = NTRIE t) /\ | |
({n} = s <=> n INSERT NEMPTY = s) /\ | |
(_0 INSERT NEMPTY = NZERO) /\ | |
(_0 INSERT NZERO = NZERO) /\ | |
(_0 INSERT s = s1 <=> _0 INSERT NNODE s t = NNODE s1 t) /\ | |
(n INSERT NZERO = t <=> BIT0 n INSERT NZERO = NNODE t NEMPTY) /\ | |
({n} = t <=> BIT1 n INSERT NZERO = NNODE NZERO t) /\ | |
(n INSERT s = s1 <=> BIT0 n INSERT NNODE s t = NNODE s1 t) /\ | |
(n INSERT t = t1 <=> BIT1 n INSERT NNODE s t = NNODE s t1)`, | |
REWRITE_TAC[NTRIE_INSERT; NTRIE_EQ] THEN REPEAT COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[NTRIE_INSERT; NTRIE_EQ] THEN | |
MESON_TAC[NEMPTY; NZERO]) in | |
let rec NTRIE_INSERT_RULE = | |
function | |
Const("_0",_),Const("NEMPTY",_) -> pth2 | |
| Const("_0",_),Const("NZERO",_) -> pth3 | |
| Const("_0",_),Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
let rth = NTRIE_INSERT_RULE(zero_tm,stm) in | |
let stm1 = rand(concl rth) in | |
let pth = INST [stm,svar; ttm,tvar; stm1,svar1] pth4 in | |
EQ_MP pth rth | |
| ntm,Const("NEMPTY",_) -> | |
let rth = NTRIE_SING_RULE ntm in | |
let stm = rand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar] pth1 in | |
EQ_MP pth rth | |
| Comb(Const("BIT0",_),ntm),Const("NZERO",_) -> | |
let rth = NTRIE_INSERT_RULE(ntm,NZERO_tm) in | |
let ttm = rand(concl rth) in | |
let pth = INST [ntm,nvar; ttm,tvar] pth5 in | |
EQ_MP pth rth | |
| Comb(Const("BIT1",_),ntm),Const("NZERO",_) -> | |
let rth = NTRIE_SING_RULE ntm in | |
let ttm = rand(concl rth) in | |
let pth = INST [ntm,nvar; ttm,tvar] pth6 in | |
EQ_MP pth rth | |
| Comb(Const("BIT0",_),ntm), | |
Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
let rth = NTRIE_INSERT_RULE(ntm,stm) in | |
let stm1 = rand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar; ttm,tvar; stm1,svar1] pth7 in | |
EQ_MP pth rth | |
| Comb(Const("BIT1",_),ntm), | |
Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
let rth = NTRIE_INSERT_RULE(ntm,ttm) in | |
let ttm1 = rand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar; ttm,tvar; ttm1,tvar1] pth8 in | |
EQ_MP pth rth | |
| _ -> failwith "Malformed ntrie or numeral" in | |
let NTRIE_INSERT_CONV : conv = | |
function | |
Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)), | |
Comb(Const("NTRIE",_),stm)) -> | |
let rth = NTRIE_INSERT_RULE(ntm,stm) in | |
let ttm = rand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth0 in | |
EQ_MP pth rth | |
| _ -> failwith "NTRIE_INSERT_CONV" in | |
NTRIE_INSERT_RULE,NTRIE_INSERT_CONV | |
(* ------------------------------------------------------------------------- *) | |
(* Union. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_UNION_CONV : conv = | |
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9] = | |
(CONJUNCTS o STANDARDIZE o prove) | |
(`(s1 UNION s2 = s <=> NTRIE s1 UNION NTRIE s2 = NTRIE s) /\ | |
NEMPTY UNION NEMPTY = NEMPTY /\ | |
NEMPTY UNION NZERO = NZERO /\ | |
NZERO UNION NEMPTY = NZERO /\ | |
NZERO UNION NZERO = NZERO /\ | |
(s UNION NEMPTY = s) /\ | |
(NEMPTY UNION t = t) /\ | |
(s UNION NZERO = s1 <=> NNODE s t UNION NZERO = NNODE s1 t) /\ | |
(s UNION NZERO = s1 <=> NZERO UNION NNODE s t = NNODE s1 t) /\ | |
(s1 UNION s2 = s /\ t1 UNION t2 = t <=> | |
NNODE s1 t1 UNION NNODE s2 t2 = NNODE s t)`, | |
REPEAT STRIP_TAC THEN TRY EQ_TAC THEN | |
REPEAT (FIRST_X_ASSUM SUBST_VAR_TAC) THEN | |
REWRITE_TAC[NTRIE_UNION; NTRIE; NTRIE_EQ]) in | |
let rec NTRIE_UNION_NZERO = | |
function | |
Const("NEMPTY",_) -> pth2 | |
| Const("NZERO",_) -> pth4 | |
| Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
NTRIE_NNODE_UNION_NZERO (stm,ttm) | |
| _ -> failwith "Malformed ntrie" | |
and NTRIE_NNODE_UNION_NZERO (stm,ttm) = | |
let rth = NTRIE_UNION_NZERO stm in | |
let stm1 = rand(concl rth) in | |
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth7 in | |
EQ_MP pth rth | |
and NTRIE_NZERO_UNION_NNODE (stm,ttm) = | |
let rth = NTRIE_UNION_NZERO stm in | |
let stm1 = rand(concl rth) in | |
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth8 in | |
EQ_MP pth rth in | |
let rec NTRIE_UNION_RULE = | |
function | |
Const("NEMPTY",_),Const("NEMPTY",_) -> pth1 | |
| Const("NEMPTY",_),Const("NZERO",_) -> pth2 | |
| Const("NZERO",_),Const("NEMPTY",_) -> pth3 | |
| Const("NZERO",_),Const("NZERO",_) -> pth4 | |
| stm,Const("NEMPTY",_) -> INST [stm,svar] pth5 | |
| Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth6 | |
| Comb(Comb(Const("NNODE",_),stm),ttm),Const("NZERO",_) -> | |
NTRIE_NNODE_UNION_NZERO (stm,ttm) | |
| Const("NZERO",_),Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
NTRIE_NZERO_UNION_NNODE (stm,ttm) | |
| Comb(Comb(Const("NNODE",_),stm1),ttm1), | |
Comb(Comb(Const("NNODE",_),stm2),ttm2) -> | |
let rth1 = NTRIE_UNION_RULE(stm1,stm2) | |
and rth2 = NTRIE_UNION_RULE(ttm1,ttm2) in | |
let stm = rand(concl rth1) | |
and ttm = rand(concl rth2) in | |
let pth = INST [stm,svar; stm1,svar1; stm2,svar2; | |
ttm,tvar; ttm1,tvar1; ttm2,tvar2] | |
pth9 in | |
EQ_MP pth (CONJ rth1 rth2) | |
| _ -> failwith "Malformed ntrie" in | |
let NTRIE_UNION_CONV : conv = | |
function | |
Comb(Comb(Const("UNION",_),Comb(Const("NTRIE",_),stm1)), | |
Comb(Const("NTRIE",_),stm2)) -> | |
let rth = NTRIE_UNION_RULE(stm1,stm2) in | |
let stm = rand(concl rth) in | |
EQ_MP (INST [stm,svar; stm1,svar1; stm2,svar2] pth0) rth | |
| _ -> failwith "NTRIE_UNION_CONV" in | |
NTRIE_UNION_CONV | |
(* ------------------------------------------------------------------------- *) | |
(* Intersection. *) | |
(* ------------------------------------------------------------------------- *) | |
let MK_NNODE_RULE = | |
let pth0,pth1 = (CONJ_PAIR o STANDARDIZE o prove) | |
(`NNODE NEMPTY NEMPTY = NEMPTY /\ | |
NNODE NZERO NEMPTY = NZERO`, | |
REWRITE_TAC[NTRIE_EQ]) in | |
function | |
Const("NEMPTY",_),Const("NEMPTY",_) -> pth0 | |
| Const("NZERO",_),Const("NEMPTY",_) -> pth1 | |
| _ -> failwith "MK_NNODE_RULE" | |
let NTRIE_INTER_CONV : conv = | |
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9;npth9;pth10] = | |
(CONJUNCTS o STANDARDIZE o prove) | |
(`(s1 INTER s2 = s <=> NTRIE s1 INTER NTRIE s2 = NTRIE s) /\ | |
NEMPTY INTER NEMPTY = NEMPTY /\ | |
NEMPTY INTER NZERO = NEMPTY /\ | |
NZERO INTER NEMPTY = NEMPTY /\ | |
s INTER NEMPTY = NEMPTY /\ | |
NEMPTY INTER t = NEMPTY /\ | |
NZERO INTER NZERO = NZERO /\ | |
(s INTER NZERO = s1 <=> NNODE s t INTER NZERO = s1) /\ | |
(s INTER NZERO = s1 <=> NZERO INTER NNODE s t = s1) /\ | |
(_0 IN t <=> NZERO INTER t = NZERO) /\ | |
(~(_0 IN t) <=> NZERO INTER t = NEMPTY) /\ | |
(s1 INTER s2 = s /\ t1 INTER t2 = t <=> | |
NNODE s1 t1 INTER NNODE s2 t2 = NNODE s t)`, | |
REWRITE_TAC[NTRIE_INTER; NTRIE_EQ; NTRIE; NZERO; NEMPTY] THEN SET_TAC[]) in | |
let rec NTRIE_INTER_NZERO = | |
function | |
Const("NEMPTY",_) -> pth2 | |
| Const("NZERO",_) -> pth6 | |
| Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
NTRIE_NNODE_INTER_NZERO (stm,ttm) | |
| _ -> failwith "Malformed ntrie" | |
and NTRIE_NNODE_INTER_NZERO (stm,ttm) = | |
let rth = NTRIE_INTER_NZERO stm in | |
let stm1 = rand(concl rth) in | |
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth7 in | |
EQ_MP pth rth | |
and NTRIE_NZERO_INTER_NNODE (stm,ttm) = | |
let rth = NTRIE_INTER_NZERO stm in | |
let stm1 = rand(concl rth) in | |
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth8 in | |
EQ_MP pth rth in | |
let rec NTRIE_INTER_RULE = | |
function | |
Const("NEMPTY",_),Const("NEMPTY",_) -> pth1 | |
| Const("NEMPTY",_),Const("NZERO",_) -> pth2 | |
| Const("NZERO",_),Const("NEMPTY",_) -> pth3 | |
| Const("NZERO",_),Const("NZERO",_) -> pth6 | |
| stm,Const("NEMPTY",_) -> INST [stm,svar] pth4 | |
| Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth5 | |
| Comb(Comb(Const("NNODE",_),stm),ttm),Const("NZERO",_) -> | |
NTRIE_NNODE_INTER_NZERO(stm,ttm) | |
| Const("NZERO",_),Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
NTRIE_NZERO_INTER_NNODE(stm,ttm) | |
| Const("NZERO",_),ttm -> | |
let b,rth = NTRIE_ZERO_IN_RULE ttm in | |
let pth = if b then pth9 else npth9 in | |
EQ_MP (INST [ttm,tvar] pth) rth | |
| Comb(Comb(Const("NNODE",_),stm1),ttm1), | |
Comb(Comb(Const("NNODE",_),stm2),ttm2) -> | |
let rth1 = NTRIE_INTER_RULE(stm1,stm2) | |
and rth2 = NTRIE_INTER_RULE(ttm1,ttm2) in | |
let stm = rand(concl rth1) | |
and ttm = rand(concl rth2) in | |
let pth = INST [stm,svar; stm1,svar1; stm2,svar2; | |
ttm,tvar; ttm1,tvar1; ttm2,tvar2] | |
pth10 in | |
let th = EQ_MP pth (CONJ rth1 rth2) in | |
( try TRANS th (MK_NNODE_RULE(stm,ttm)) | |
with Failure _ -> th ) | |
| _ -> failwith "Malformed ntrie" in | |
let NTRIE_INTER_CONV : conv = | |
function | |
Comb(Comb(Const("INTER",_),Comb(Const("NTRIE",_),stm1)), | |
Comb(Const("NTRIE",_),stm2)) -> | |
let rth = NTRIE_INTER_RULE(stm1,stm2) in | |
let stm = rand(concl rth) in | |
EQ_MP (INST [stm,svar; stm1,svar1; stm2,svar2] pth0) rth | |
| _ -> failwith "NTRIE_INTER_CONV" in | |
NTRIE_INTER_CONV | |
(* ------------------------------------------------------------------------- *) | |
(* Deletion. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_DELETE_ZERO,NTRIE_NNODE_DELETE_ZERO,NTRIE_DELETE_CONV = | |
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8] = | |
(CONJUNCTS o STANDARDIZE o prove) | |
(`(s DELETE n = t <=> NTRIE s DELETE NUMERAL n = NTRIE t) /\ | |
NEMPTY DELETE _0 = NEMPTY /\ | |
NEMPTY DELETE n = NEMPTY /\ | |
NZERO DELETE _0 = NEMPTY /\ | |
(~(n = _0) <=> NZERO DELETE BIT0 n = NZERO) /\ | |
NZERO DELETE BIT1 n = NZERO /\ | |
(s DELETE _0 = s1 <=> NNODE s t DELETE _0 = NNODE s1 t) /\ | |
(s DELETE n = s1 <=> NNODE s t DELETE BIT0 n = NNODE s1 t) /\ | |
(t DELETE n = t1 <=> NNODE s t DELETE BIT1 n = NNODE s t1)`, | |
REWRITE_TAC[NTRIE_DELETE; ARITH_EQ; NTRIE] THEN | |
MESON_TAC[NTRIE_EQ; NTRIE_DELETE]) in | |
let rec NTRIE_DELETE_ZERO = | |
function | |
Const("NEMPTY",_) -> pth1 | |
| Const("NZERO",_) -> pth3 | |
| Comb(Comb(Const("NNODE",_),stm),ttm) -> | |
NTRIE_NNODE_DELETE_ZERO(stm,ttm) | |
| _ -> failwith "Malformed ntrie" | |
and NTRIE_NNODE_DELETE_ZERO (stm,ttm) = | |
let rth = NTRIE_DELETE_ZERO stm in | |
let stm1 = rand(concl rth) in | |
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth6 in | |
EQ_MP pth rth in | |
let NTRIE_DELETE_CONV : conv = | |
let rec NTRIE_DELETE_RULE = | |
function | |
Const("NEMPTY",_),Const("_0",_) -> pth1 | |
| Const("NEMPTY",_),ntm -> INST [ntm,nvar] pth2 | |
| Const("NZERO",_),Const("_0",_) -> pth3 | |
| Comb(Comb(Const("NNODE",_),stm),ttm),Const("_0",_) -> | |
NTRIE_NNODE_DELETE_ZERO(stm,ttm) | |
| Const("NZERO",_),Comb(Const("BIT0",_),ntm) -> | |
let rth = NUM_NZ_RULE ntm in | |
EQ_MP (INST [ntm,nvar] pth4) rth | |
| Const("NZERO",_),Comb(Const("BIT1",_),ntm) -> INST [ntm,nvar] pth5 | |
| Comb(Comb(Const("NNODE",_),stm),ttm),Comb(Const("BIT0",_),ntm) -> | |
let rth = NTRIE_DELETE_RULE(stm,ntm) in | |
let stm1 = rand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar; stm1,svar1; ttm,tvar] pth7 in | |
let th = EQ_MP pth rth in | |
( try TRANS th (MK_NNODE_RULE(stm1,ttm)) with Failure _ -> th ) | |
| Comb(Comb(Const("NNODE",_),stm),ttm),Comb(Const("BIT1",_),ntm) -> | |
let rth = NTRIE_DELETE_RULE(ttm,ntm) in | |
let ttm1 = rand(concl rth) in | |
let pth = INST [ntm,nvar; stm,svar; ttm,tvar; ttm1,tvar1] pth8 in | |
let th = EQ_MP pth rth in | |
( try TRANS th (MK_NNODE_RULE(stm,ttm1)) with Failure _ -> th ) | |
| _ -> failwith "Malformed ntrie" in | |
function | |
Comb(Comb(Const("DELETE",_),Comb(Const("NTRIE",_),stm)), | |
Comb(Const("NUMERAL",_),ntm)) -> | |
let rth = NTRIE_DELETE_RULE(stm,ntm) in | |
let ttm = rand(concl rth) in | |
EQ_MP (INST [ntm,nvar; stm,svar; ttm,tvar] pth0) rth | |
| _ -> failwith "NTRIE_DELETE_CONV" in | |
NTRIE_DELETE_ZERO,NTRIE_NNODE_DELETE_ZERO,NTRIE_DELETE_CONV | |
(* ------------------------------------------------------------------------- *) | |
(* Disjointedness. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_DISJOINT_CONV : conv = | |
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9;pth10;pth11;pth12] = | |
(CONJUNCTS o STANDARDIZE o prove) | |
(`DISJOINT NEMPTY NEMPTY /\ | |
DISJOINT NEMPTY NZERO /\ | |
DISJOINT NZERO NEMPTY /\ | |
~DISJOINT NZERO NZERO /\ | |
DISJOINT s NEMPTY /\ | |
DISJOINT NEMPTY t /\ | |
(_0 IN s <=> ~DISJOINT s NZERO) /\ | |
(~(_0 IN s) <=> DISJOINT s NZERO) /\ | |
(_0 IN t <=> ~DISJOINT NZERO t) /\ | |
(~(_0 IN t) <=> DISJOINT NZERO t) /\ | |
(DISJOINT s1 s2 /\ DISJOINT t1 t2 <=> | |
DISJOINT (NNODE s1 t1) (NNODE s2 t2)) /\ | |
(~DISJOINT s1 s2 ==> ~DISJOINT (NNODE s1 t1) (NNODE s2 t2)) /\ | |
(~DISJOINT t1 t2 ==> ~DISJOINT (NNODE s1 t1) (NNODE s2 t2))`, | |
SIMP_TAC[NTRIE_DISJOINT] THEN REWRITE_TAC[NZERO] THEN SET_TAC[]) in | |
let rec NTRIE_DISJOINT_RULE = | |
function | |
Const("NEMPTY",_),Const("NEMPTY",_) -> true,pth0 | |
| Const("NEMPTY",_),Const("NZERO",_) -> true,pth1 | |
| Const("NZERO",_),Const("NEMPTY",_) -> true,pth2 | |
| Const("NZERO",_),Const("NZERO",_) -> false,pth3 | |
| stm,Const("NEMPTY",_) -> true,INST [stm,svar] pth4 | |
| Const("NEMPTY",_),ttm -> true,INST [ttm,tvar] pth5 | |
| stm,Const("NZERO",_) -> | |
let b,rth = NTRIE_ZERO_IN_RULE stm in | |
let pinst = INST [stm,svar] in | |
let pth = pinst (if b then pth6 else pth7) in | |
not b,EQ_MP pth rth | |
| Const("NZERO",_),ttm -> | |
let b,rth = NTRIE_ZERO_IN_RULE ttm in | |
let pinst = INST [ttm,tvar] in | |
let pth = pinst (if b then pth8 else pth9) in | |
not b,EQ_MP pth rth | |
| Comb(Comb(Const("NNODE",_),stm1),ttm1), | |
Comb(Comb(Const("NNODE",_),stm2),ttm2) -> | |
let b1,rth1 = NTRIE_DISJOINT_RULE (stm1,stm2) in | |
let pinst = INST [stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in | |
if not b1 then false,MP (pinst pth11) rth1 else | |
let b2,rth2 = NTRIE_DISJOINT_RULE (ttm1,ttm2) in | |
if not b2 then false,MP (pinst pth12) rth2 else | |
true,EQ_MP (pinst pth10) (CONJ rth1 rth2) | |
| _ -> failwith "Malformed ntrie" in | |
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove) | |
(`(DISJOINT s t <=> (DISJOINT (NTRIE s) (NTRIE t) <=> T)) /\ | |
(~DISJOINT s t <=> (DISJOINT (NTRIE s) (NTRIE t) <=> F))`, | |
REWRITE_TAC[NTRIE]) in | |
function | |
Comb(Comb(Const("DISJOINT",_),Comb(Const("NTRIE",_),stm)), | |
Comb(Const("NTRIE",_),ttm)) -> | |
let b,rth = NTRIE_DISJOINT_RULE(stm,ttm) in | |
let pth = if b then pth1 else pth2 in | |
EQ_MP (INST [stm,svar; ttm,tvar] pth) rth | |
| _ -> failwith "NTRIE_DISJOINT_CONV" | |
(* ------------------------------------------------------------------------- *) | |
(* Set difference. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_DIFF_CONV : conv = | |
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9] = | |
(CONJUNCTS o STANDARDIZE o prove) | |
(`NEMPTY DIFF NEMPTY = NEMPTY /\ | |
NEMPTY DIFF NZERO = NEMPTY /\ | |
NZERO DIFF NEMPTY = NZERO /\ | |
NZERO DIFF NZERO = NEMPTY /\ | |
NEMPTY DIFF t = NEMPTY /\ | |
s DIFF NEMPTY = s /\ | |
s DIFF NZERO = s DELETE _0 /\ | |
(_0 IN t <=> NZERO DIFF t = NEMPTY) /\ | |
(~(_0 IN t) <=> NZERO DIFF t = NZERO) /\ | |
(s1 DIFF s2 = s /\ t1 DIFF t2 = t <=> | |
NNODE s1 t1 DIFF NNODE s2 t2 = NNODE s t)`, | |
REWRITE_TAC[NTRIE_DIFF; NTRIE_EQ] THEN | |
REWRITE_TAC[NZERO; NEMPTY] THEN SET_TAC[]) in | |
let rec NTRIE_DIFF_RULE = | |
function | |
Const("NEMPTY",_),Const("NEMPTY",_) -> pth0 | |
| Const("NEMPTY",_),Const("NZERO",_) -> pth1 | |
| Const("NZERO",_),Const("NEMPTY",_) -> pth2 | |
| Const("NZERO",_),Const("NZERO",_) -> pth3 | |
| stm,Const("NEMPTY",_) -> INST [stm,svar] pth5 | |
| Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth4 | |
| stm,Const("NZERO",_) -> | |
let rth = NTRIE_DELETE_ZERO stm in | |
let pth = INST [stm,svar] pth6 in | |
TRANS pth rth | |
| Const("NZERO",_),ttm -> | |
let b,rth = NTRIE_ZERO_IN_RULE ttm in | |
let pinst = INST [ttm,tvar] in | |
let pth = pinst(if b then pth7 else pth8) in | |
EQ_MP pth rth | |
| Comb(Comb(Const("NNODE",_),stm1),ttm1), | |
Comb(Comb(Const("NNODE",_),stm2),ttm2) -> | |
let rth1 = NTRIE_DIFF_RULE(stm1,stm2) | |
and rth2 = NTRIE_DIFF_RULE(ttm1,ttm2) in | |
let stm = rand(concl rth1) | |
and ttm = rand(concl rth2) in | |
let pth = INST [stm,svar; stm1,svar1; stm2,svar2; | |
ttm,tvar; ttm1,tvar1; ttm2,tvar2] | |
pth9 in | |
let th = EQ_MP pth (CONJ rth1 rth2) in | |
( try TRANS th (MK_NNODE_RULE(stm,ttm)) with Failure _ -> th ) | |
| _ -> failwith "Malformed ntrie" in | |
let pth = (STANDARDIZE o prove) | |
(`(s DIFF t = s1 <=> NTRIE s DIFF NTRIE t = NTRIE s1)`, | |
REWRITE_TAC[NTRIE]) in | |
function | |
Comb(Comb(Const("DIFF",_),Comb(Const("NTRIE",_),stm)), | |
Comb(Const("NTRIE",_),ttm)) -> | |
let rth = NTRIE_DIFF_RULE(stm,ttm) in | |
let rtm = rand(concl rth) in | |
EQ_MP (INST [stm,svar; ttm,tvar; rtm,svar1] pth) rth | |
| _ -> failwith "NTRIE_DIFF_CONV" | |
(* ------------------------------------------------------------------------- *) | |
(* Encoding from and decoding to set enumerations. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_ENCODE_CONV : conv = | |
let [pth0;pth1;pth2] = (CONJUNCTS o STANDARDIZE o prove) | |
(`{} = NEMPTY /\ | |
s = NTRIE s /\ | |
(INSERT) (NUMERAL n) = (INSERT) n`, | |
REWRITE_TAC[NTRIE; NEMPTY; NUMERAL]) in | |
let rec NTRIE_ENC_CONV : conv = | |
function | |
Const("EMPTY",ty) when ty = ntrie_ty -> pth0 | |
| Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)),stm) -> | |
let rth1 = NTRIE_ENC_CONV stm in | |
let ttm = rand(concl rth1) in | |
let rth2 = MK_COMB ((INST [ntm,nvar] pth2),rth1) in | |
TRANS rth2 (NTRIE_INSERT_RULE (ntm,ttm)) | |
| _ -> failwith "NTRIE_ENC_CONV" in | |
fun tm -> | |
let rth = NTRIE_ENC_CONV tm in | |
let stm = rand(concl rth) in | |
TRANS rth (INST [stm,svar] pth1);; | |
let NTRIE_DECODE_CONV : conv = | |
fun tm -> | |
let l = dest_small_ntrie tm in | |
let tm' = mk_numset (map mk_small_numeral (sort (<) l)) in | |
SYM (NTRIE_ENCODE_CONV tm');; | |
end | |
let NTRIE_IN_CONV : conv = Ntrie_conversions.NTRIE_IN_CONV | |
and NTRIE_SUBSET_CONV : conv = Ntrie_conversions.NTRIE_SUBSET_CONV | |
and NTRIE_EQ_CONV : conv = Ntrie_conversions.NTRIE_EQ_CONV | |
and NTRIE_SING_CONV : conv = Ntrie_conversions.NTRIE_SING_CONV | |
and NTRIE_INSERT_CONV : conv = Ntrie_conversions.NTRIE_INSERT_CONV | |
and NTRIE_UNION_CONV : conv = Ntrie_conversions.NTRIE_UNION_CONV | |
and NTRIE_INTER_CONV : conv = Ntrie_conversions.NTRIE_INTER_CONV | |
and NTRIE_DELETE_CONV : conv = Ntrie_conversions.NTRIE_DELETE_CONV | |
and NTRIE_DISJOINT_CONV : conv = Ntrie_conversions.NTRIE_DISJOINT_CONV | |
and NTRIE_DIFF_CONV : conv = Ntrie_conversions.NTRIE_DIFF_CONV | |
and NTRIE_ENCODE_CONV : conv = Ntrie_conversions.NTRIE_ENCODE_CONV | |
and NTRIE_DECODE_CONV : conv = Ntrie_conversions.NTRIE_DECODE_CONV;; | |
(* ------------------------------------------------------------------------- *) | |
(* Final hack-together. *) | |
(* ------------------------------------------------------------------------- *) | |
let NTRIE_REL_CONV : conv = | |
let gconv_net = itlist (uncurry net_of_conv) | |
[`NTRIE s = NTRIE t`, NTRIE_EQ_CONV; | |
`NTRIE s SUBSET NTRIE t`, NTRIE_SUBSET_CONV; | |
`DISJOINT (NTRIE s) (NTRIE t)`, NTRIE_DISJOINT_CONV; | |
`NUMERAL n IN NTRIE s`, NTRIE_IN_CONV] | |
(basic_net()) in | |
REWRITES_CONV gconv_net;; | |
let NTRIE_RED_CONV : conv = | |
let gconv_net = itlist (uncurry net_of_conv) | |
[`NTRIE s = NTRIE t`, NTRIE_EQ_CONV; | |
`NTRIE s SUBSET NTRIE t`, NTRIE_SUBSET_CONV; | |
`DISJOINT (NTRIE s) (NTRIE t)`, NTRIE_DISJOINT_CONV; | |
`NUMERAL n IN NTRIE s`, NTRIE_IN_CONV; | |
`NUMERAL n INSERT NTRIE s`, NTRIE_INSERT_CONV; | |
`NTRIE s UNION NTRIE t`, NTRIE_UNION_CONV; | |
`NTRIE s INTER NTRIE t`, NTRIE_INTER_CONV; | |
`NTRIE s DELETE NUMERAL n`, NTRIE_DELETE_CONV; | |
`NTRIE s DIFF NTRIE t`, NTRIE_DIFF_CONV] | |
(basic_net()) in | |
REWRITES_CONV gconv_net;; | |
let NTRIE_REDUCE_CONV = DEPTH_CONV NTRIE_RED_CONV;; | |
let NTRIE_REDUCE_TAC = CONV_TAC NTRIE_REDUCE_CONV;; | |