Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
54.3 kB
(* ========================================================================= *)
(* Computing with finite sets of numerals. *)
(* *)
(* (c) Copyright, Clelia Lomuto, Marco Maggesi, 2009. *)
(* Distributed with HOL Light under same license terms *)
(* *)
(* This file provides some conversions that operate on finite sets of *)
(* numerals represented as a trie-like structure (here called "ntries"). *)
(* *)
(* A concrete syntax for ntries is made available after loading this file. *)
(* *)
(* Examples: *)
(* *)
(* # NTRIE_REDUCE_CONV `%%(10 1001 3) INTER %%(3 7 10) UNION %%(3 100)`;; *)
(* val it : thm = *)
(* |- %%(3 10 1001) INTER %%(3 7 10) UNION %%(3 100) = %%(3 10 100) *)
(* *)
(* NTRIE_REDUCE_CONV *)
(* `%%(10 1001 3) INTER %%(3 7 10) SUBSET %%(10 23) UNION %%(3 33)`;; *)
(* val it : thm = *)
(* |- %%(3 10 1001) INTER %%(3 7 10) SUBSET %%(10 23) UNION %%(3 33) <=> T *)
(* *)
(* The code in this file is divided into three main parts: *)
(* 1. Definitions and theorems. *)
(* 2. Syntax extension for ntries. *)
(* 3. Rules and conversions. *)
(* ========================================================================= *)
(* ========================================================================= *)
(* First part: Definitions and theorems. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Constructors for the ntrie representation of a set of numerals. *)
(* ------------------------------------------------------------------------- *)
let NTRIE = new_definition `NTRIE s:num->bool = s`
and NEMPTY = new_definition `NEMPTY:num->bool = {}`
and NZERO = new_definition `NZERO = {_0}`
and NNODE = new_definition `NNODE s t = IMAGE BIT0 s UNION IMAGE BIT1 t`;;
let NTRIE_RELATIONS = prove
(`NNODE NEMPTY NEMPTY = NEMPTY /\
NNODE NZERO NEMPTY = NZERO`,
REWRITE_TAC[NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Membership. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_IN = prove
(`(!s n. NUMERAL n IN NTRIE s <=> n IN s) /\
(!n. ~(n IN NEMPTY)) /\
(!n. n IN NZERO <=> n = _0) /\
(!s t. _0 IN NNODE s t <=> _0 IN s) /\
(!s t n. BIT0 n IN NNODE s t <=> n IN s) /\
(!s t n. BIT1 n IN NNODE s t <=> n IN t)`,
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Inclusion. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_SUBSET = prove
(`(!s t. NTRIE s SUBSET NTRIE t <=> s SUBSET t) /\
(!s. NEMPTY SUBSET s) /\
(!s:num->bool. s SUBSET s) /\
~(NZERO SUBSET NEMPTY) /\
(!s t. NNODE s t SUBSET NEMPTY <=> s SUBSET NEMPTY /\ t SUBSET NEMPTY) /\
(!s t. NNODE s t SUBSET NZERO <=> s SUBSET NZERO /\ t SUBSET NEMPTY) /\
(!s t. NZERO SUBSET NNODE s t <=> NZERO SUBSET s) /\
(!s1 s2 t1 t2.
NNODE s1 t1 SUBSET NNODE s2 t2 <=> s1 SUBSET s2 /\ t1 SUBSET t2)`,
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE; SUBSET; FORALL_IN_UNION;
FORALL_IN_IMAGE; FORALL_IN_INSERT] THEN
REWRITE_TAC[IN_UNION; IN_IMAGE; IN_INSERT; NOT_IN_EMPTY; ARITH_EQ] THEN
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Equality. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_EQ = prove
(`(!s t. NTRIE s = NTRIE t <=> s = t) /\
~(NZERO = NEMPTY) /\
~(NEMPTY = NZERO) /\
(!s t. NNODE s t = NEMPTY <=> s = NEMPTY /\ t = NEMPTY) /\
(!s t. NEMPTY = NNODE s t <=> s = NEMPTY /\ t = NEMPTY) /\
(!s t. NNODE s t = NZERO <=> s = NZERO /\ t = NEMPTY) /\
(!s t. NZERO = NNODE s t <=> s = NZERO /\ t = NEMPTY) /\
(!s1 s2 t1 t2. NNODE s1 t1 = NNODE s2 t2 <=> s1 = s2 /\ t1 = t2)`,
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; NTRIE_SUBSET; NEMPTY; NZERO] THEN
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Singleton. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_SING = prove
(`(!n. {NUMERAL n} = NTRIE {n}) /\
{_0} = NZERO /\
(!n. {BIT0 n} = if n = _0 then NZERO else NNODE {n} NEMPTY) /\
(!n. {BIT1 n} = NNODE NEMPTY {n})`,
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN
REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN
ASM_REWRITE_TAC[] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Insertion. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_INSERT = prove
(`(!s n. NUMERAL n INSERT NTRIE s = NTRIE (n INSERT s)) /\
_0 INSERT NEMPTY = NZERO /\
_0 INSERT NZERO = NZERO /\
(!s t. _0 INSERT NNODE s t = NNODE (_0 INSERT s) t) /\
(!n. BIT0 n INSERT NZERO = if n = _0 then NZERO else
NNODE (n INSERT NZERO) NEMPTY) /\
(!n. BIT1 n INSERT NZERO = NNODE NZERO {n}) /\
(!s t n. BIT0 n INSERT NNODE s t = NNODE (n INSERT s) t) /\
(!s t n. BIT1 n INSERT NNODE s t = NNODE s (n INSERT t))`,
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN
REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN
ASM_REWRITE_TAC[] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Union. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_UNION = prove
(`(!s t. NTRIE s UNION NTRIE t = NTRIE (s UNION t)) /\
(!s. s UNION NEMPTY = s) /\
(!s. NEMPTY UNION s = s) /\
NZERO UNION NZERO = NZERO /\
(!s t. NNODE s t UNION NZERO = NNODE (s UNION NZERO) t) /\
(!s t. NZERO UNION NNODE s t = NNODE (s UNION NZERO) t) /\
(!s t r q. NNODE s t UNION NNODE r q = NNODE (s UNION r) (t UNION q))`,
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Intersection. *)
(* Warning: rewriting with this theorem generates ntries which are not *)
(* "reduced". It has to be used in conjuction with NTRIE_RELATIONS. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_INTER = prove
(`(!s t. NTRIE s INTER NTRIE t = NTRIE (s INTER t)) /\
(!s. NEMPTY INTER s = NEMPTY) /\
(!s. s INTER NEMPTY = NEMPTY) /\
NZERO INTER NZERO = NZERO /\
(!s t. NZERO INTER NNODE s t = NZERO INTER s) /\
(!s t. NNODE s t INTER NZERO = NZERO INTER s) /\
(!s1 s2 t1 t2.
NNODE s1 t1 INTER NNODE s2 t2 = NNODE (s1 INTER s2) (t1 INTER t2))`,
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Deletion. *)
(* Warning: rewriting with this theorem generates ntries which are not *)
(* "reduced". It has to be used in conjuction with NTRIE_RELATIONS. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DELETE = prove
(`(!s n. NTRIE s DELETE NUMERAL n = NTRIE (s DELETE n)) /\
(!n. NEMPTY DELETE n = NEMPTY) /\
(!n. NZERO DELETE n = if n = _0 then NEMPTY else NZERO) /\
(!s t. NNODE s t DELETE _0 = NNODE (s DELETE _0) t) /\
(!s t n. NNODE s t DELETE BIT0 n = NNODE (s DELETE n) t) /\
(!s t n. NNODE s t DELETE BIT1 n = NNODE s (t DELETE n))`,
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN
REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN
ASM_REWRITE_TAC[] THEN ASM SET_TAC[ARITH_EQ; ARITH_ZERO]);;
(* ------------------------------------------------------------------------- *)
(* Disjointedness. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DISJOINT = prove
(`(!s t. DISJOINT (NTRIE s) (NTRIE t) <=> DISJOINT s t) /\
(!s. DISJOINT s NEMPTY) /\
(!s. DISJOINT NEMPTY s) /\
~DISJOINT NZERO NZERO /\
(!s t. DISJOINT NZERO (NNODE s t) <=> DISJOINT s NZERO) /\
(!s t. DISJOINT (NNODE s t) NZERO <=> DISJOINT s NZERO) /\
(!s1 s2 t1 t2. DISJOINT (NNODE s1 t1) (NNODE s2 t2) <=>
DISJOINT s1 s2 /\ DISJOINT t1 t2)`,
REWRITE_TAC[NTRIE; DISJOINT; GSYM NEMPTY;
NTRIE_INTER; INTER_ACI; NTRIE_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Difference. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DIFF = prove
(`(!s t. NTRIE s DIFF NTRIE t = NTRIE (s DIFF t)) /\
(!s. NEMPTY DIFF s = NEMPTY) /\
(!s. s DIFF NEMPTY = s) /\
NZERO DIFF NZERO = NEMPTY /\
(!s t. NZERO DIFF NNODE s t = NZERO DIFF s) /\
(!s t. NNODE s t DIFF NZERO = NNODE (s DIFF NZERO) t) /\
(!s1 t1 s2 t2. NNODE s1 t1 DIFF NNODE s2 t2 =
NNODE (s1 DIFF s2) (t1 DIFF t2))`,
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Image. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_IMAGE_DEF = new_definition
`!f:num->A acc s. NTRIE_IMAGE f acc s = IMAGE f s UNION acc`;;
let NTRIE_IMAGE = prove
(`(!f:num->A acc. NTRIE_IMAGE f acc NEMPTY = acc) /\
(!f:num->A acc. NTRIE_IMAGE f acc NZERO = f _0 INSERT acc) /\
(!f:num->A acc s t.
NTRIE_IMAGE f acc (NNODE s t) =
NTRIE_IMAGE (\n. f (BIT1 n)) (NTRIE_IMAGE (\n. f (BIT0 n)) acc s) t)`,
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE; NTRIE_IMAGE_DEF] THEN SET_TAC[]);;
let IMAGE_EQ_NTRIE_IMAGE = prove
(`!f:num->A s. IMAGE f (NTRIE s) = NTRIE_IMAGE (\n. f (NUMERAL n)) {} s`,
REWRITE_TAC [NUMERAL; NTRIE; ETA_AX; NTRIE_IMAGE_DEF; UNION_EMPTY]);;
(* ------------------------------------------------------------------------- *)
(* Constructor and destructor for ntries. *)
(* ------------------------------------------------------------------------- *)
let [NTRIE_tm; NEMPTY_tm; NZERO_tm; NNODE_tm] =
let f = fst o strip_comb o lhs o snd o strip_forall o concl in
map f [NTRIE; NEMPTY; NZERO; NNODE];;
let mk_nnode = mk_binop NNODE_tm;;
let mk_small_ntrie =
let rec mk_sing n =
if n == 0 then NZERO_tm else
let r,d = n mod 2,n / 2 in
let tm = mk_sing d in
if r == 0
then mk_nnode tm NEMPTY_tm
else mk_nnode NEMPTY_tm tm in
let rec part ((el,ol) as acc) =
function
[] -> acc
| h::t -> let acc = let r,d = h mod 2,h / 2 in
if r = 0 then (d::el,ol) else (el,d::ol) in
part acc t in
let rec recur =
function
[] -> NEMPTY_tm
| [n] -> mk_sing n
| m::(n::_ as t) when n == m -> recur t
| s -> let evens,odds = part ([],[]) s in
mk_nnode (recur evens) (recur odds) in
fun tm -> mk_comb(NTRIE_tm,recur tm);;
let mk_ntrie =
let rec mk_sing n =
if n =/ num_0 then NZERO_tm else
let r,d = mod_num n num_2,quo_num n num_2 in
let tm = mk_sing d in
if r =/ num_0
then mk_nnode tm NEMPTY_tm
else mk_nnode NEMPTY_tm tm in
let rec part ((el,ol) as acc) =
function
[] -> acc
| h::t -> let acc = let r,d = mod_num h num_2,quo_num h num_2 in
if r =/ num_0 then (d::el,ol) else (el,d::ol) in
part acc t in
let rec recur =
function
[] -> NEMPTY_tm
| [n] -> mk_sing n
| m::(n::_ as t) when n =/ m -> recur t
| s -> let evens,odds = part ([],[]) s in
mk_nnode (recur evens) (recur odds) in
fun tm -> mk_comb(NTRIE_tm,recur tm);;
(* ========================================================================= *)
(* Second part: Syntax extension for ntries. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Destructor for ntries. *)
(* ------------------------------------------------------------------------- *)
let mk_numset tm = mk_setenum(tm,`:num`);;
let dest_small_ntrie,dest_ntrie =
let ntrie_strip_tag =
function
Comb(Const("NTRIE",_),tm) -> tm
| _ -> failwith "ntrie_strip_tag" in
let dest_small_ntrie tm =
let rec runk n =
function
[] -> n
| h::t -> let d = 2*n in runk (if h then d+1 else d) t in
let rec recur acc k =
function
Const("NEMPTY",_) -> acc
| Const("NZERO",_) -> runk 0 k::acc
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
recur (recur acc (false::k) stm) (true::k) ttm
| _ -> failwith "malformed ntrie" in
recur [] [] (ntrie_strip_tag tm) in
let dest_ntrie tm =
let rec runk n =
function
[] -> n
| h::t -> let d = num_2 */ n in runk (if h then d +/ num_1 else d) t in
let rec recur acc k =
function
Const("NEMPTY",_) -> acc
| Const("NZERO",_) -> runk num_0 k::acc
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
recur (recur acc (false::k) stm) (true::k) ttm
| _ -> failwith "malformed ntrie" in
recur [] [] (ntrie_strip_tag tm) in
dest_small_ntrie,dest_ntrie;;
(* ------------------------------------------------------------------------- *)
(* Printer. *)
(* ------------------------------------------------------------------------- *)
let pp_print_ntrie =
let print_num fmt n = pp_print_string fmt (string_of_num n) in
let print_nums fmt =
let rec loop =
function
[] -> ()
| h::t -> pp_print_space fmt (); print_num fmt h; loop t
in
function
[] -> ()
| h::t -> print_num fmt h; loop t in
let print fmt tm =
let l = sort (</) (dest_ntrie tm) in
pp_open_box fmt 0; pp_print_string fmt "%%(";
pp_open_box fmt 0; print_nums fmt l; pp_close_box fmt ();
pp_print_string fmt ")"; pp_close_box fmt () in
fun fmt ->
function
Comb(Const("NTRIE",_),_) as tm -> print fmt tm
| _ -> failwith "print_ntrie";;
let print_ntrie = pp_print_ntrie std_formatter
and string_of_ntrie = print_to_string pp_print_ntrie;;
install_user_printer("ntrie",pp_print_ntrie);;
(* ------------------------------------------------------------------------- *)
(* Parser. *)
(* ------------------------------------------------------------------------- *)
reserve_words["%%"];;
let preparse_ntrie,parse_ntrie =
let NTRIE_ptm = Varp("NTRIE",dpty)
and NEMPTY_ptm = Varp("NEMPTY",dpty)
and NZERO_ptm = Varp("NZERO",dpty)
and NNODE_ptm = Varp("NNODE",dpty) in
let pmk_nnode ptm1 ptm2 = Combp(Combp(NNODE_ptm,ptm1),ptm2) in
let pmk_ntrie =
let rec pmk_sing n =
if n =/ num_0 then NZERO_ptm else
let r,d = mod_num n num_2,quo_num n num_2 in
let tm = pmk_sing d in
if r =/ num_0
then pmk_nnode tm NEMPTY_ptm
else pmk_nnode NEMPTY_ptm tm in
let rec part ((el,ol) as acc) =
function
[] -> acc
| h::t -> let acc = let r,d = mod_num h num_2,quo_num h num_2 in
if r = num_0 then (d::el,ol) else (el,d::ol) in
part acc t in
let rec recur =
function
[] -> NEMPTY_ptm
| [n] -> pmk_sing n
| m::(n::_ as t) when n =/ m -> recur t
| s -> let evens,odds = part ([],[]) s in
pmk_nnode (recur evens) (recur odds) in
fun tm -> Combp(NTRIE_ptm,recur tm) in
let parse_int =
function
Ident s::rest ->
let n = try num_of_string s with Failure _ -> raise Noparse in
n,rest
| _ -> raise Noparse in
let parse_ints = many parse_int >> pmk_ntrie in
let preparse_ntrie =
((a(Resword "%%") ++ a(Resword "(") ++ parse_ints) >> snd) ++
a(Resword ")") >> fst in
let parse_ntrie s =
let ptm,l = (preparse_ntrie o lex o explode) s in
if l = [] then term_of_preterm (retypecheck [] ptm) else
failwith "Unparsed input following term" in
preparse_ntrie,parse_ntrie;;
install_parser("ntrie",preparse_ntrie);;
(* ========================================================================= *)
(* Third part: Rules and conversions. *)
(* ========================================================================= *)
module Ntrie_conversions = struct
(* ------------------------------------------------------------------------- *)
(* Basic definitions, handy tools and other preliminaries. *)
(* ------------------------------------------------------------------------- *)
let Comb(NUMERAL_tm,(Comb(BIT0_tm,Comb(BIT1_tm,zero_tm)))) =
lhand(concl TWO)
let comb_numeral tm = mk_comb(NUMERAL_tm,tm)
let mk_bit0 tm = if tm = zero_tm then tm else mk_comb(BIT0_tm,tm)
and mk_bit1 tm = mk_comb(BIT1_tm,tm)
and ntrie_ty = type_of NEMPTY_tm
let neg_tm = `(~)`
and eq_tm = `(=):(num->bool)->(num->bool)->bool`
and iff_tm = `(=):bool->bool->bool`
and conj_tm = `(/\):bool->bool->bool`
and IN_tm = `(IN):num->(num->bool)->bool`
and EMPTY_tm = `{}:num->bool`
and SUBSET_tm = `(SUBSET):(num->bool)->(num->bool)->bool`
and PSUBSET_tm = `(PSUBSET):(num->bool)->(num->bool)->bool`
and DISJOINT_tm = `(DISJOINT):(num->bool)->(num->bool)->bool`
and INSERT_tm = `(INSERT):num->(num->bool)->(num->bool)`
and UNION_tm = `(UNION):(num->bool)->(num->bool)->(num->bool)`
and INTER_tm = `(INTER):(num->bool)->(num->bool)->(num->bool)`
and DELETE_tm = `(DELETE):(num->bool)->num->(num->bool)`
and DIFF_tm = `(DIFF):(num->bool)->(num->bool)->(num->bool)`
let [svar;svar1;svar2;tvar;tvar1;tvar2] =
map (fun s -> mk_var(s,ntrie_ty)) ["s";"s1";"s2";"t";"t1";"t2"]
and nvar = `n:num`
let STANDARDIZE =
let ilist =
map (fun x -> x,x)
[NEMPTY_tm; NZERO_tm; NNODE_tm; NTRIE_tm; IN_tm; eq_tm; SUBSET_tm;
PSUBSET_tm; DISJOINT_tm; INSERT_tm; UNION_tm; INTER_tm; DELETE_tm;
DIFF_tm; neg_tm; iff_tm; conj_tm; BIT0_tm; BIT1_tm; zero_tm;
nvar; svar; svar1; svar2; tvar; tvar1; tvar2] in
let rec replace tm =
match tm with
Var(_,_) | Const(_,_) -> rev_assocd tm ilist tm
| Comb(s,t) -> mk_comb(replace s,replace t)
| Abs(_,_) -> failwith "replace" in
fun th -> let tm' = replace (concl th) in EQ_MP (REFL tm') th
(* ------------------------------------------------------------------------- *)
(* Well-formed (and minimal) ntries. *)
(* ------------------------------------------------------------------------- *)
let wellformed =
let rec visit =
function
Const("NEMPTY",_) -> ()
| Const("NZERO",_) -> ()
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
( match stm,ttm with
Const("NEMPTY",_),Const("NEMPTY",_) |
Const("NZERO",_),Const("NEMPTY",_) -> fail()
| _ -> visit stm; visit ttm )
| _ -> fail() in
function
Comb(Const("NTRIE",_),tm) -> can visit tm
| _ -> false
(* ------------------------------------------------------------------------- *)
(* Membership. *)
(* ------------------------------------------------------------------------- *)
let NUM_NZ_RULE,NTRIE_ZERO_IN_RULE,NTRIE_CHOOSE_RULE,NTRIE_IN_CONV =
let rec NUM_NZ_RULE =
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove)
(`~(BIT1 n = _0) /\
(~(n = _0) <=> ~(BIT0 n = _0))`,
REWRITE_TAC[ARITH_EQ]) in
function
Comb(Const("BIT1",_),ntm) -> INST [ntm,nvar] pth1
| Comb(Const("BIT0",_),ntm) ->
let rth = NUM_NZ_RULE ntm
and pth = INST [ntm,nvar] pth2 in
EQ_MP pth rth
| _ -> failwith "NUM_NZ_RULE" in
let [zine_nth;zinx_pth;ine_nth;zinn_pth;pth4;pth5;pth6;pth7] =
(CONJUNCTS o STANDARDIZE o prove)
(`~(_0 IN NEMPTY) /\
_0 IN NZERO /\
~(n IN NEMPTY) /\
(_0 IN s <=> _0 IN NNODE s t) /\
(n IN s <=> BIT0 n IN NNODE s t) /\
(n IN t <=> BIT1 n IN NNODE s t) /\
~(BIT1 n IN NZERO) /\
(~(n = _0) <=> ~(BIT0 n IN NZERO))`,
REWRITE_TAC[NTRIE_IN; ARITH_EQ]) in
let [zinn_nth;npth4;npth5] =
map (AP_TERM neg_tm) [zinn_pth;pth4;pth5] in
let rec NTRIE_ZERO_IN_RULE : term -> bool * thm =
function
Const("NEMPTY",_) -> false,zine_nth
| Const("NZERO",_) -> true,zinx_pth
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
let b,rth = NTRIE_ZERO_IN_RULE stm in
let pth = if b then zinn_pth else zinn_nth in
b,EQ_MP (INST [stm,svar; ttm,tvar] pth) rth
| _ -> failwith "Malformed ntrie" in
let rec NTRIE_CHOOSE_RULE =
function
Const("NEMPTY",_) -> failwith "Empty ntrie"
| Const("NZERO",_) -> zinx_pth
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
( try let rth = NTRIE_CHOOSE_RULE ttm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth5 in
EQ_MP pth rth
with Failure _ ->
let rth = NTRIE_CHOOSE_RULE stm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth4 in
EQ_MP pth rth )
| _ -> failwith "Malformed ntrie" in
let NTRIE_IN_CONV : conv =
let rec NTRIE_IN_RULE : term * term -> bool * thm =
function
Const("_0",_),stm -> NTRIE_ZERO_IN_RULE stm
| ntm,Const("NEMPTY",_) -> false,INST [ntm,nvar] ine_nth
| Comb(Const("BIT1",_),ntm),Const("NZERO",_) ->
false,INST [ntm,nvar] pth6
| Comb(Const("BIT0",_),ntm),Const("NZERO",_) ->
let rth = NUM_NZ_RULE ntm in
false,EQ_MP (INST [ntm,nvar] pth7) rth
| Comb(Const("BIT0",_),ntm),Comb(Comb(Const("NNODE",_),stm),ttm) ->
let b,rth = NTRIE_IN_RULE(ntm,stm) in
let pth = if b then pth4 else npth4 in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth in
b,EQ_MP pth rth
| Comb(Const("BIT1",_),ntm),Comb(Comb(Const("NNODE",_),stm),ttm) ->
let b,rth = NTRIE_IN_RULE(ntm,ttm) in
let pth = if b then pth5 else npth5 in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth in
b,EQ_MP pth rth
| _ -> failwith "NTRIE_IN_RULE" in
let NTRIE_IN_CONV : conv =
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove)
(`(n IN s <=> (NUMERAL n IN NTRIE s <=> T)) /\
(~(n IN s) <=> (NUMERAL n IN NTRIE s <=> F))`,
REWRITE_TAC[NUMERAL;NTRIE]) in
function
Comb(Comb(Const("IN",_),Comb(Const("NUMERAL",_),ntm)),
Comb(Const("NTRIE",_),stm)) ->
let b,rth = NTRIE_IN_RULE(ntm,stm) in
let pth = if b then pth1 else pth2 in
EQ_MP (INST [ntm,nvar; stm,svar] pth) rth
| _ -> failwith "NTRIE_IN_CONV" in
NTRIE_IN_CONV in
NUM_NZ_RULE,NTRIE_ZERO_IN_RULE,NTRIE_CHOOSE_RULE,NTRIE_IN_CONV
(* ------------------------------------------------------------------------- *)
(* Inclusion. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_SUBSET_CONV : conv =
let [sub_refl_pth; esube_pth; xsubx_pth; esubx_pth; esub_pth; xsube_nth;
sube_nth; xsubn_pth; xsubn_nth; nsubx_pth; nsubx_nth1; nsubx_nth2;
nsubn_pth; nsubn_nth1; nsubn_nth2] =
(CONJUNCTS o STANDARDIZE o prove)
(`s SUBSET s /\
NEMPTY SUBSET NEMPTY /\
NZERO SUBSET NZERO /\
NEMPTY SUBSET NZERO /\
NEMPTY SUBSET t /\
~(NZERO SUBSET NEMPTY) /\
(n IN s ==> ~(s SUBSET NEMPTY)) /\
(NZERO SUBSET s <=> NZERO SUBSET NNODE s t) /\
(~(NZERO SUBSET s) <=> ~(NZERO SUBSET NNODE s t)) /\
(s SUBSET NZERO <=> NNODE s NEMPTY SUBSET NZERO) /\
(~(s SUBSET NZERO) <=> ~(NNODE s NEMPTY SUBSET NZERO)) /\
(n IN t ==> ~(NNODE s t SUBSET NZERO)) /\
(s1 SUBSET s2 /\ t1 SUBSET t2 <=> NNODE s1 t1 SUBSET NNODE s2 t2) /\
(~(s1 SUBSET s2) ==> ~(NNODE s1 t1 SUBSET NNODE s2 t2)) /\
(~(t1 SUBSET t2) ==> ~(NNODE s1 t1 SUBSET NNODE s2 t2))`,
SIMP_TAC[NTRIE_SUBSET] THEN REWRITE_TAC[NEMPTY] THEN SET_TAC[]) in
let rec NTRIE_NZERO_SUBSET_RULE =
function
Const("NEMPTY",_) -> false,xsube_nth
| Const("NZERO",_) -> true,xsubx_pth
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
let b,rth = NTRIE_NZERO_SUBSET_RULE stm in
let pth = if b then xsubn_pth else xsubn_nth in
b,EQ_MP (INST [stm,svar; ttm,tvar] pth) rth
| _ -> failwith "Malformed ntrie" in
let rec NTRIE_SUBSET_NZERO_RULE =
function
Const("NEMPTY",_) -> true,esubx_pth
| Const("NZERO",_) -> true,xsubx_pth
| Comb(Comb(Const("NNODE",_),stm),Const("NEMPTY",_)) ->
let b,rth = NTRIE_SUBSET_NZERO_RULE stm in
let pth = if b then nsubx_pth else nsubx_nth1 in
b,EQ_MP (INST [stm,svar] pth) rth
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
let rth = NTRIE_CHOOSE_RULE ttm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] nsubx_nth2 in
false,MP pth rth
| _ -> failwith "Malformed ntrie" in
let rec NTRIE_SUBSET_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> true,esube_pth
| Const("NEMPTY",_),Const("NZERO",_) -> true,esubx_pth
| Const("NEMPTY",_),ttm -> true,INST [ttm,tvar] esub_pth
| stm,Const("NEMPTY",_) ->
let rth = NTRIE_CHOOSE_RULE stm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] sube_nth in
false,MP pth rth
| Const("NZERO",_),ttm -> NTRIE_NZERO_SUBSET_RULE ttm
| stm,Const("NZERO",_) -> NTRIE_SUBSET_NZERO_RULE stm
| stm,ttm when stm = ttm -> true,INST [stm,svar] sub_refl_pth
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let b1,rth1 = NTRIE_SUBSET_RULE (stm1,stm2) in
let pinst = INST[stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in
if not b1 then false,MP (pinst nsubn_nth1) rth1 else
let b2,rth2 = NTRIE_SUBSET_RULE (ttm1,ttm2) in
if not b2 then false,MP (pinst nsubn_nth2) rth2 else
true,EQ_MP (pinst nsubn_pth) (CONJ rth1 rth2)
| _ -> failwith "Malformed ntrie" in
let NTRIE_SUBSET_CONV : conv =
let pth_sub_eqt,pth_sub_eqf = (CONJ_PAIR o STANDARDIZE o prove)
(`(s SUBSET t <=> (NTRIE s SUBSET NTRIE t <=> T)) /\
(~(s SUBSET t) <=> (NTRIE s SUBSET NTRIE t <=> F))`,
REWRITE_TAC[NTRIE]) in
function
Comb(Comb(Const("SUBSET",_),Comb(Const("NTRIE",_),stm)),
Comb(Const("NTRIE",_),ttm)) ->
let b,rth = NTRIE_SUBSET_RULE(stm,ttm) in
let pth = if b then pth_sub_eqt else pth_sub_eqf in
EQ_MP (INST [stm,svar; ttm,tvar] pth) rth
| _ -> failwith "NTRIE_SUBSET_CONV" in
NTRIE_SUBSET_CONV
(* ------------------------------------------------------------------------- *)
(* Equality. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_EQ_CONV : conv =
let [eq_refl_pth;eeqe_pth;xeqx_pth;eeqx_nth;xeqe_nth;eqe_nth;eeq_nth;
eqx_nth1;eqx_nth2;neqn_pth;neqn_nth1;neqn_nth2] =
(CONJUNCTS o STANDARDIZE o prove)
(`s = s /\
NEMPTY = NEMPTY /\
NZERO = NZERO /\
~(NEMPTY = NZERO) /\
~(NZERO = NEMPTY) /\
(n IN s ==> ~(s = NEMPTY)) /\
(n IN t ==> ~(NEMPTY = t)) /\
(~(n = _0) ==> n IN s ==> ~(s = NZERO)) /\
(~(n = _0) ==> n IN t ==> ~(NZERO = t)) /\
(s1 = s2 /\ t1 = t2 <=> NNODE s1 t1 = NNODE s2 t2) /\
(~(s1 = s2) ==> ~(NNODE s1 t1 = NNODE s2 t2)) /\
(~(t1 = t2) ==> ~(NNODE s1 t1 = NNODE s2 t2))`,
SIMP_TAC[NTRIE_EQ] THEN SET_TAC[NEMPTY; NZERO]) in
let rec NTRIE_EQ_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> true,eeqe_pth
| Const("NZERO",_),Const("NZERO",_) -> true,xeqx_pth
| Const("NEMPTY",_),Const("NZERO",_) -> false,eeqx_nth
| Const("NZERO",_),Const("NEMPTY",_) -> false,xeqe_nth
| stm,Const("NEMPTY",_) ->
let rth = NTRIE_CHOOSE_RULE stm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] eqe_nth in
false,MP pth rth
| Const("NEMPTY",_),ttm ->
let rth = NTRIE_CHOOSE_RULE ttm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; ttm,tvar] eeq_nth in
false,MP pth rth
| stm,Const("NZERO",_) ->
let rth = NTRIE_CHOOSE_RULE stm in
let ntm = lhand(concl rth) in
let zth = NUM_NZ_RULE ntm in
let pth = INST [ntm,nvar; stm,svar] eqx_nth1 in
false,MP (MP pth zth) rth
| Const("NZERO",_),ttm ->
let rth = NTRIE_CHOOSE_RULE ttm in
let ntm = lhand(concl rth) in
let zth = NUM_NZ_RULE ntm in
let pth = INST [ntm,nvar; ttm,tvar] eqx_nth2 in
false,MP (MP pth zth) rth
| stm,ttm when stm = ttm -> true,INST [stm,svar] eq_refl_pth
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let b1,rth1 = NTRIE_EQ_RULE(stm1,stm2) in
let pinst = INST[stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in
if not b1 then false,MP (pinst neqn_nth1) rth1 else
let b2,rth2 = NTRIE_EQ_RULE(ttm1,ttm2) in
if not b2 then false,MP (pinst neqn_nth2) rth2 else
failwith "Malformed ntrie"
| _ -> failwith "Malformed ntrie" in
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove)
(`(s = t <=> (NTRIE s = NTRIE t <=> T)) /\
(~(s = t) <=> (NTRIE s = NTRIE t <=> F))`,
REWRITE_TAC[NTRIE]) in
function
Comb(Comb(Const("=",_),Comb(Const("NTRIE",_),stm)),
Comb(Const("NTRIE",_),ttm)) ->
let b,rth = NTRIE_EQ_RULE(stm,ttm) in
let pth = if b then pth1 else pth2 in
EQ_MP (INST [stm,svar; ttm,tvar] pth) rth
| _ -> failwith "NTRIE_SUBSET_CONV"
(* ------------------------------------------------------------------------- *)
(* Singleton. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_SING_RULE,NTRIE_SING_CONV =
let [pth0;pth1;pth2;pth3] = (CONJUNCTS o STANDARDIZE o prove)
(`({n} = s <=> ({NUMERAL n} = NTRIE s)) /\
({_0} = NZERO) /\
({n} = s ==> {BIT0 n} = NNODE s NEMPTY) /\
({n} = s <=> {BIT1 n} = NNODE NEMPTY s)`,
REWRITE_TAC[NTRIE_SING; NTRIE; NTRIE_EQ] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[NTRIE_EQ] THEN MESON_TAC[NZERO]) in
let rec NTRIE_SING_RULE =
function
Const("_0",_) -> pth1
| Comb(Const("BIT0",_),ntm) ->
let rth = NTRIE_SING_RULE ntm in
let stm = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] pth2 in
MP pth rth
| Comb(Const("BIT1",_),ntm) ->
let rth = NTRIE_SING_RULE ntm in
let stm = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] pth3 in
EQ_MP pth rth
| _ -> failwith "Malformed numeral" in
let NTRIE_SING_CONV : conv =
function
Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)),
Const("EMPTY",_)) ->
let rth = NTRIE_SING_RULE ntm in
let stm = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] pth0 in
EQ_MP pth rth
| _ -> failwith "NTRIE_SING_CONV" in
NTRIE_SING_RULE,NTRIE_SING_CONV
(* ------------------------------------------------------------------------- *)
(* Insertion. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_INSERT_RULE,NTRIE_INSERT_CONV =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8] =
(CONJUNCTS o STANDARDIZE o prove)
(`(n INSERT s = t <=> NUMERAL n INSERT NTRIE s = NTRIE t) /\
({n} = s <=> n INSERT NEMPTY = s) /\
(_0 INSERT NEMPTY = NZERO) /\
(_0 INSERT NZERO = NZERO) /\
(_0 INSERT s = s1 <=> _0 INSERT NNODE s t = NNODE s1 t) /\
(n INSERT NZERO = t <=> BIT0 n INSERT NZERO = NNODE t NEMPTY) /\
({n} = t <=> BIT1 n INSERT NZERO = NNODE NZERO t) /\
(n INSERT s = s1 <=> BIT0 n INSERT NNODE s t = NNODE s1 t) /\
(n INSERT t = t1 <=> BIT1 n INSERT NNODE s t = NNODE s t1)`,
REWRITE_TAC[NTRIE_INSERT; NTRIE_EQ] THEN REPEAT COND_CASES_TAC THEN
ASM_REWRITE_TAC[NTRIE_INSERT; NTRIE_EQ] THEN
MESON_TAC[NEMPTY; NZERO]) in
let rec NTRIE_INSERT_RULE =
function
Const("_0",_),Const("NEMPTY",_) -> pth2
| Const("_0",_),Const("NZERO",_) -> pth3
| Const("_0",_),Comb(Comb(Const("NNODE",_),stm),ttm) ->
let rth = NTRIE_INSERT_RULE(zero_tm,stm) in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; ttm,tvar; stm1,svar1] pth4 in
EQ_MP pth rth
| ntm,Const("NEMPTY",_) ->
let rth = NTRIE_SING_RULE ntm in
let stm = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] pth1 in
EQ_MP pth rth
| Comb(Const("BIT0",_),ntm),Const("NZERO",_) ->
let rth = NTRIE_INSERT_RULE(ntm,NZERO_tm) in
let ttm = rand(concl rth) in
let pth = INST [ntm,nvar; ttm,tvar] pth5 in
EQ_MP pth rth
| Comb(Const("BIT1",_),ntm),Const("NZERO",_) ->
let rth = NTRIE_SING_RULE ntm in
let ttm = rand(concl rth) in
let pth = INST [ntm,nvar; ttm,tvar] pth6 in
EQ_MP pth rth
| Comb(Const("BIT0",_),ntm),
Comb(Comb(Const("NNODE",_),stm),ttm) ->
let rth = NTRIE_INSERT_RULE(ntm,stm) in
let stm1 = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar; stm1,svar1] pth7 in
EQ_MP pth rth
| Comb(Const("BIT1",_),ntm),
Comb(Comb(Const("NNODE",_),stm),ttm) ->
let rth = NTRIE_INSERT_RULE(ntm,ttm) in
let ttm1 = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar; ttm1,tvar1] pth8 in
EQ_MP pth rth
| _ -> failwith "Malformed ntrie or numeral" in
let NTRIE_INSERT_CONV : conv =
function
Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)),
Comb(Const("NTRIE",_),stm)) ->
let rth = NTRIE_INSERT_RULE(ntm,stm) in
let ttm = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth0 in
EQ_MP pth rth
| _ -> failwith "NTRIE_INSERT_CONV" in
NTRIE_INSERT_RULE,NTRIE_INSERT_CONV
(* ------------------------------------------------------------------------- *)
(* Union. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_UNION_CONV : conv =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9] =
(CONJUNCTS o STANDARDIZE o prove)
(`(s1 UNION s2 = s <=> NTRIE s1 UNION NTRIE s2 = NTRIE s) /\
NEMPTY UNION NEMPTY = NEMPTY /\
NEMPTY UNION NZERO = NZERO /\
NZERO UNION NEMPTY = NZERO /\
NZERO UNION NZERO = NZERO /\
(s UNION NEMPTY = s) /\
(NEMPTY UNION t = t) /\
(s UNION NZERO = s1 <=> NNODE s t UNION NZERO = NNODE s1 t) /\
(s UNION NZERO = s1 <=> NZERO UNION NNODE s t = NNODE s1 t) /\
(s1 UNION s2 = s /\ t1 UNION t2 = t <=>
NNODE s1 t1 UNION NNODE s2 t2 = NNODE s t)`,
REPEAT STRIP_TAC THEN TRY EQ_TAC THEN
REPEAT (FIRST_X_ASSUM SUBST_VAR_TAC) THEN
REWRITE_TAC[NTRIE_UNION; NTRIE; NTRIE_EQ]) in
let rec NTRIE_UNION_NZERO =
function
Const("NEMPTY",_) -> pth2
| Const("NZERO",_) -> pth4
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
NTRIE_NNODE_UNION_NZERO (stm,ttm)
| _ -> failwith "Malformed ntrie"
and NTRIE_NNODE_UNION_NZERO (stm,ttm) =
let rth = NTRIE_UNION_NZERO stm in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth7 in
EQ_MP pth rth
and NTRIE_NZERO_UNION_NNODE (stm,ttm) =
let rth = NTRIE_UNION_NZERO stm in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth8 in
EQ_MP pth rth in
let rec NTRIE_UNION_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> pth1
| Const("NEMPTY",_),Const("NZERO",_) -> pth2
| Const("NZERO",_),Const("NEMPTY",_) -> pth3
| Const("NZERO",_),Const("NZERO",_) -> pth4
| stm,Const("NEMPTY",_) -> INST [stm,svar] pth5
| Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth6
| Comb(Comb(Const("NNODE",_),stm),ttm),Const("NZERO",_) ->
NTRIE_NNODE_UNION_NZERO (stm,ttm)
| Const("NZERO",_),Comb(Comb(Const("NNODE",_),stm),ttm) ->
NTRIE_NZERO_UNION_NNODE (stm,ttm)
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let rth1 = NTRIE_UNION_RULE(stm1,stm2)
and rth2 = NTRIE_UNION_RULE(ttm1,ttm2) in
let stm = rand(concl rth1)
and ttm = rand(concl rth2) in
let pth = INST [stm,svar; stm1,svar1; stm2,svar2;
ttm,tvar; ttm1,tvar1; ttm2,tvar2]
pth9 in
EQ_MP pth (CONJ rth1 rth2)
| _ -> failwith "Malformed ntrie" in
let NTRIE_UNION_CONV : conv =
function
Comb(Comb(Const("UNION",_),Comb(Const("NTRIE",_),stm1)),
Comb(Const("NTRIE",_),stm2)) ->
let rth = NTRIE_UNION_RULE(stm1,stm2) in
let stm = rand(concl rth) in
EQ_MP (INST [stm,svar; stm1,svar1; stm2,svar2] pth0) rth
| _ -> failwith "NTRIE_UNION_CONV" in
NTRIE_UNION_CONV
(* ------------------------------------------------------------------------- *)
(* Intersection. *)
(* ------------------------------------------------------------------------- *)
let MK_NNODE_RULE =
let pth0,pth1 = (CONJ_PAIR o STANDARDIZE o prove)
(`NNODE NEMPTY NEMPTY = NEMPTY /\
NNODE NZERO NEMPTY = NZERO`,
REWRITE_TAC[NTRIE_EQ]) in
function
Const("NEMPTY",_),Const("NEMPTY",_) -> pth0
| Const("NZERO",_),Const("NEMPTY",_) -> pth1
| _ -> failwith "MK_NNODE_RULE"
let NTRIE_INTER_CONV : conv =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9;npth9;pth10] =
(CONJUNCTS o STANDARDIZE o prove)
(`(s1 INTER s2 = s <=> NTRIE s1 INTER NTRIE s2 = NTRIE s) /\
NEMPTY INTER NEMPTY = NEMPTY /\
NEMPTY INTER NZERO = NEMPTY /\
NZERO INTER NEMPTY = NEMPTY /\
s INTER NEMPTY = NEMPTY /\
NEMPTY INTER t = NEMPTY /\
NZERO INTER NZERO = NZERO /\
(s INTER NZERO = s1 <=> NNODE s t INTER NZERO = s1) /\
(s INTER NZERO = s1 <=> NZERO INTER NNODE s t = s1) /\
(_0 IN t <=> NZERO INTER t = NZERO) /\
(~(_0 IN t) <=> NZERO INTER t = NEMPTY) /\
(s1 INTER s2 = s /\ t1 INTER t2 = t <=>
NNODE s1 t1 INTER NNODE s2 t2 = NNODE s t)`,
REWRITE_TAC[NTRIE_INTER; NTRIE_EQ; NTRIE; NZERO; NEMPTY] THEN SET_TAC[]) in
let rec NTRIE_INTER_NZERO =
function
Const("NEMPTY",_) -> pth2
| Const("NZERO",_) -> pth6
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
NTRIE_NNODE_INTER_NZERO (stm,ttm)
| _ -> failwith "Malformed ntrie"
and NTRIE_NNODE_INTER_NZERO (stm,ttm) =
let rth = NTRIE_INTER_NZERO stm in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth7 in
EQ_MP pth rth
and NTRIE_NZERO_INTER_NNODE (stm,ttm) =
let rth = NTRIE_INTER_NZERO stm in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth8 in
EQ_MP pth rth in
let rec NTRIE_INTER_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> pth1
| Const("NEMPTY",_),Const("NZERO",_) -> pth2
| Const("NZERO",_),Const("NEMPTY",_) -> pth3
| Const("NZERO",_),Const("NZERO",_) -> pth6
| stm,Const("NEMPTY",_) -> INST [stm,svar] pth4
| Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth5
| Comb(Comb(Const("NNODE",_),stm),ttm),Const("NZERO",_) ->
NTRIE_NNODE_INTER_NZERO(stm,ttm)
| Const("NZERO",_),Comb(Comb(Const("NNODE",_),stm),ttm) ->
NTRIE_NZERO_INTER_NNODE(stm,ttm)
| Const("NZERO",_),ttm ->
let b,rth = NTRIE_ZERO_IN_RULE ttm in
let pth = if b then pth9 else npth9 in
EQ_MP (INST [ttm,tvar] pth) rth
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let rth1 = NTRIE_INTER_RULE(stm1,stm2)
and rth2 = NTRIE_INTER_RULE(ttm1,ttm2) in
let stm = rand(concl rth1)
and ttm = rand(concl rth2) in
let pth = INST [stm,svar; stm1,svar1; stm2,svar2;
ttm,tvar; ttm1,tvar1; ttm2,tvar2]
pth10 in
let th = EQ_MP pth (CONJ rth1 rth2) in
( try TRANS th (MK_NNODE_RULE(stm,ttm))
with Failure _ -> th )
| _ -> failwith "Malformed ntrie" in
let NTRIE_INTER_CONV : conv =
function
Comb(Comb(Const("INTER",_),Comb(Const("NTRIE",_),stm1)),
Comb(Const("NTRIE",_),stm2)) ->
let rth = NTRIE_INTER_RULE(stm1,stm2) in
let stm = rand(concl rth) in
EQ_MP (INST [stm,svar; stm1,svar1; stm2,svar2] pth0) rth
| _ -> failwith "NTRIE_INTER_CONV" in
NTRIE_INTER_CONV
(* ------------------------------------------------------------------------- *)
(* Deletion. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DELETE_ZERO,NTRIE_NNODE_DELETE_ZERO,NTRIE_DELETE_CONV =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8] =
(CONJUNCTS o STANDARDIZE o prove)
(`(s DELETE n = t <=> NTRIE s DELETE NUMERAL n = NTRIE t) /\
NEMPTY DELETE _0 = NEMPTY /\
NEMPTY DELETE n = NEMPTY /\
NZERO DELETE _0 = NEMPTY /\
(~(n = _0) <=> NZERO DELETE BIT0 n = NZERO) /\
NZERO DELETE BIT1 n = NZERO /\
(s DELETE _0 = s1 <=> NNODE s t DELETE _0 = NNODE s1 t) /\
(s DELETE n = s1 <=> NNODE s t DELETE BIT0 n = NNODE s1 t) /\
(t DELETE n = t1 <=> NNODE s t DELETE BIT1 n = NNODE s t1)`,
REWRITE_TAC[NTRIE_DELETE; ARITH_EQ; NTRIE] THEN
MESON_TAC[NTRIE_EQ; NTRIE_DELETE]) in
let rec NTRIE_DELETE_ZERO =
function
Const("NEMPTY",_) -> pth1
| Const("NZERO",_) -> pth3
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
NTRIE_NNODE_DELETE_ZERO(stm,ttm)
| _ -> failwith "Malformed ntrie"
and NTRIE_NNODE_DELETE_ZERO (stm,ttm) =
let rth = NTRIE_DELETE_ZERO stm in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth6 in
EQ_MP pth rth in
let NTRIE_DELETE_CONV : conv =
let rec NTRIE_DELETE_RULE =
function
Const("NEMPTY",_),Const("_0",_) -> pth1
| Const("NEMPTY",_),ntm -> INST [ntm,nvar] pth2
| Const("NZERO",_),Const("_0",_) -> pth3
| Comb(Comb(Const("NNODE",_),stm),ttm),Const("_0",_) ->
NTRIE_NNODE_DELETE_ZERO(stm,ttm)
| Const("NZERO",_),Comb(Const("BIT0",_),ntm) ->
let rth = NUM_NZ_RULE ntm in
EQ_MP (INST [ntm,nvar] pth4) rth
| Const("NZERO",_),Comb(Const("BIT1",_),ntm) -> INST [ntm,nvar] pth5
| Comb(Comb(Const("NNODE",_),stm),ttm),Comb(Const("BIT0",_),ntm) ->
let rth = NTRIE_DELETE_RULE(stm,ntm) in
let stm1 = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; stm1,svar1; ttm,tvar] pth7 in
let th = EQ_MP pth rth in
( try TRANS th (MK_NNODE_RULE(stm1,ttm)) with Failure _ -> th )
| Comb(Comb(Const("NNODE",_),stm),ttm),Comb(Const("BIT1",_),ntm) ->
let rth = NTRIE_DELETE_RULE(ttm,ntm) in
let ttm1 = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar; ttm1,tvar1] pth8 in
let th = EQ_MP pth rth in
( try TRANS th (MK_NNODE_RULE(stm,ttm1)) with Failure _ -> th )
| _ -> failwith "Malformed ntrie" in
function
Comb(Comb(Const("DELETE",_),Comb(Const("NTRIE",_),stm)),
Comb(Const("NUMERAL",_),ntm)) ->
let rth = NTRIE_DELETE_RULE(stm,ntm) in
let ttm = rand(concl rth) in
EQ_MP (INST [ntm,nvar; stm,svar; ttm,tvar] pth0) rth
| _ -> failwith "NTRIE_DELETE_CONV" in
NTRIE_DELETE_ZERO,NTRIE_NNODE_DELETE_ZERO,NTRIE_DELETE_CONV
(* ------------------------------------------------------------------------- *)
(* Disjointedness. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DISJOINT_CONV : conv =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9;pth10;pth11;pth12] =
(CONJUNCTS o STANDARDIZE o prove)
(`DISJOINT NEMPTY NEMPTY /\
DISJOINT NEMPTY NZERO /\
DISJOINT NZERO NEMPTY /\
~DISJOINT NZERO NZERO /\
DISJOINT s NEMPTY /\
DISJOINT NEMPTY t /\
(_0 IN s <=> ~DISJOINT s NZERO) /\
(~(_0 IN s) <=> DISJOINT s NZERO) /\
(_0 IN t <=> ~DISJOINT NZERO t) /\
(~(_0 IN t) <=> DISJOINT NZERO t) /\
(DISJOINT s1 s2 /\ DISJOINT t1 t2 <=>
DISJOINT (NNODE s1 t1) (NNODE s2 t2)) /\
(~DISJOINT s1 s2 ==> ~DISJOINT (NNODE s1 t1) (NNODE s2 t2)) /\
(~DISJOINT t1 t2 ==> ~DISJOINT (NNODE s1 t1) (NNODE s2 t2))`,
SIMP_TAC[NTRIE_DISJOINT] THEN REWRITE_TAC[NZERO] THEN SET_TAC[]) in
let rec NTRIE_DISJOINT_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> true,pth0
| Const("NEMPTY",_),Const("NZERO",_) -> true,pth1
| Const("NZERO",_),Const("NEMPTY",_) -> true,pth2
| Const("NZERO",_),Const("NZERO",_) -> false,pth3
| stm,Const("NEMPTY",_) -> true,INST [stm,svar] pth4
| Const("NEMPTY",_),ttm -> true,INST [ttm,tvar] pth5
| stm,Const("NZERO",_) ->
let b,rth = NTRIE_ZERO_IN_RULE stm in
let pinst = INST [stm,svar] in
let pth = pinst (if b then pth6 else pth7) in
not b,EQ_MP pth rth
| Const("NZERO",_),ttm ->
let b,rth = NTRIE_ZERO_IN_RULE ttm in
let pinst = INST [ttm,tvar] in
let pth = pinst (if b then pth8 else pth9) in
not b,EQ_MP pth rth
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let b1,rth1 = NTRIE_DISJOINT_RULE (stm1,stm2) in
let pinst = INST [stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in
if not b1 then false,MP (pinst pth11) rth1 else
let b2,rth2 = NTRIE_DISJOINT_RULE (ttm1,ttm2) in
if not b2 then false,MP (pinst pth12) rth2 else
true,EQ_MP (pinst pth10) (CONJ rth1 rth2)
| _ -> failwith "Malformed ntrie" in
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove)
(`(DISJOINT s t <=> (DISJOINT (NTRIE s) (NTRIE t) <=> T)) /\
(~DISJOINT s t <=> (DISJOINT (NTRIE s) (NTRIE t) <=> F))`,
REWRITE_TAC[NTRIE]) in
function
Comb(Comb(Const("DISJOINT",_),Comb(Const("NTRIE",_),stm)),
Comb(Const("NTRIE",_),ttm)) ->
let b,rth = NTRIE_DISJOINT_RULE(stm,ttm) in
let pth = if b then pth1 else pth2 in
EQ_MP (INST [stm,svar; ttm,tvar] pth) rth
| _ -> failwith "NTRIE_DISJOINT_CONV"
(* ------------------------------------------------------------------------- *)
(* Set difference. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DIFF_CONV : conv =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9] =
(CONJUNCTS o STANDARDIZE o prove)
(`NEMPTY DIFF NEMPTY = NEMPTY /\
NEMPTY DIFF NZERO = NEMPTY /\
NZERO DIFF NEMPTY = NZERO /\
NZERO DIFF NZERO = NEMPTY /\
NEMPTY DIFF t = NEMPTY /\
s DIFF NEMPTY = s /\
s DIFF NZERO = s DELETE _0 /\
(_0 IN t <=> NZERO DIFF t = NEMPTY) /\
(~(_0 IN t) <=> NZERO DIFF t = NZERO) /\
(s1 DIFF s2 = s /\ t1 DIFF t2 = t <=>
NNODE s1 t1 DIFF NNODE s2 t2 = NNODE s t)`,
REWRITE_TAC[NTRIE_DIFF; NTRIE_EQ] THEN
REWRITE_TAC[NZERO; NEMPTY] THEN SET_TAC[]) in
let rec NTRIE_DIFF_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> pth0
| Const("NEMPTY",_),Const("NZERO",_) -> pth1
| Const("NZERO",_),Const("NEMPTY",_) -> pth2
| Const("NZERO",_),Const("NZERO",_) -> pth3
| stm,Const("NEMPTY",_) -> INST [stm,svar] pth5
| Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth4
| stm,Const("NZERO",_) ->
let rth = NTRIE_DELETE_ZERO stm in
let pth = INST [stm,svar] pth6 in
TRANS pth rth
| Const("NZERO",_),ttm ->
let b,rth = NTRIE_ZERO_IN_RULE ttm in
let pinst = INST [ttm,tvar] in
let pth = pinst(if b then pth7 else pth8) in
EQ_MP pth rth
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let rth1 = NTRIE_DIFF_RULE(stm1,stm2)
and rth2 = NTRIE_DIFF_RULE(ttm1,ttm2) in
let stm = rand(concl rth1)
and ttm = rand(concl rth2) in
let pth = INST [stm,svar; stm1,svar1; stm2,svar2;
ttm,tvar; ttm1,tvar1; ttm2,tvar2]
pth9 in
let th = EQ_MP pth (CONJ rth1 rth2) in
( try TRANS th (MK_NNODE_RULE(stm,ttm)) with Failure _ -> th )
| _ -> failwith "Malformed ntrie" in
let pth = (STANDARDIZE o prove)
(`(s DIFF t = s1 <=> NTRIE s DIFF NTRIE t = NTRIE s1)`,
REWRITE_TAC[NTRIE]) in
function
Comb(Comb(Const("DIFF",_),Comb(Const("NTRIE",_),stm)),
Comb(Const("NTRIE",_),ttm)) ->
let rth = NTRIE_DIFF_RULE(stm,ttm) in
let rtm = rand(concl rth) in
EQ_MP (INST [stm,svar; ttm,tvar; rtm,svar1] pth) rth
| _ -> failwith "NTRIE_DIFF_CONV"
(* ------------------------------------------------------------------------- *)
(* Encoding from and decoding to set enumerations. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_ENCODE_CONV : conv =
let [pth0;pth1;pth2] = (CONJUNCTS o STANDARDIZE o prove)
(`{} = NEMPTY /\
s = NTRIE s /\
(INSERT) (NUMERAL n) = (INSERT) n`,
REWRITE_TAC[NTRIE; NEMPTY; NUMERAL]) in
let rec NTRIE_ENC_CONV : conv =
function
Const("EMPTY",ty) when ty = ntrie_ty -> pth0
| Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)),stm) ->
let rth1 = NTRIE_ENC_CONV stm in
let ttm = rand(concl rth1) in
let rth2 = MK_COMB ((INST [ntm,nvar] pth2),rth1) in
TRANS rth2 (NTRIE_INSERT_RULE (ntm,ttm))
| _ -> failwith "NTRIE_ENC_CONV" in
fun tm ->
let rth = NTRIE_ENC_CONV tm in
let stm = rand(concl rth) in
TRANS rth (INST [stm,svar] pth1);;
let NTRIE_DECODE_CONV : conv =
fun tm ->
let l = dest_small_ntrie tm in
let tm' = mk_numset (map mk_small_numeral (sort (<) l)) in
SYM (NTRIE_ENCODE_CONV tm');;
end
let NTRIE_IN_CONV : conv = Ntrie_conversions.NTRIE_IN_CONV
and NTRIE_SUBSET_CONV : conv = Ntrie_conversions.NTRIE_SUBSET_CONV
and NTRIE_EQ_CONV : conv = Ntrie_conversions.NTRIE_EQ_CONV
and NTRIE_SING_CONV : conv = Ntrie_conversions.NTRIE_SING_CONV
and NTRIE_INSERT_CONV : conv = Ntrie_conversions.NTRIE_INSERT_CONV
and NTRIE_UNION_CONV : conv = Ntrie_conversions.NTRIE_UNION_CONV
and NTRIE_INTER_CONV : conv = Ntrie_conversions.NTRIE_INTER_CONV
and NTRIE_DELETE_CONV : conv = Ntrie_conversions.NTRIE_DELETE_CONV
and NTRIE_DISJOINT_CONV : conv = Ntrie_conversions.NTRIE_DISJOINT_CONV
and NTRIE_DIFF_CONV : conv = Ntrie_conversions.NTRIE_DIFF_CONV
and NTRIE_ENCODE_CONV : conv = Ntrie_conversions.NTRIE_ENCODE_CONV
and NTRIE_DECODE_CONV : conv = Ntrie_conversions.NTRIE_DECODE_CONV;;
(* ------------------------------------------------------------------------- *)
(* Final hack-together. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_REL_CONV : conv =
let gconv_net = itlist (uncurry net_of_conv)
[`NTRIE s = NTRIE t`, NTRIE_EQ_CONV;
`NTRIE s SUBSET NTRIE t`, NTRIE_SUBSET_CONV;
`DISJOINT (NTRIE s) (NTRIE t)`, NTRIE_DISJOINT_CONV;
`NUMERAL n IN NTRIE s`, NTRIE_IN_CONV]
(basic_net()) in
REWRITES_CONV gconv_net;;
let NTRIE_RED_CONV : conv =
let gconv_net = itlist (uncurry net_of_conv)
[`NTRIE s = NTRIE t`, NTRIE_EQ_CONV;
`NTRIE s SUBSET NTRIE t`, NTRIE_SUBSET_CONV;
`DISJOINT (NTRIE s) (NTRIE t)`, NTRIE_DISJOINT_CONV;
`NUMERAL n IN NTRIE s`, NTRIE_IN_CONV;
`NUMERAL n INSERT NTRIE s`, NTRIE_INSERT_CONV;
`NTRIE s UNION NTRIE t`, NTRIE_UNION_CONV;
`NTRIE s INTER NTRIE t`, NTRIE_INTER_CONV;
`NTRIE s DELETE NUMERAL n`, NTRIE_DELETE_CONV;
`NTRIE s DIFF NTRIE t`, NTRIE_DIFF_CONV]
(basic_net()) in
REWRITES_CONV gconv_net;;
let NTRIE_REDUCE_CONV = DEPTH_CONV NTRIE_RED_CONV;;
let NTRIE_REDUCE_TAC = CONV_TAC NTRIE_REDUCE_CONV;;