Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Some geometric notions in real^N. *) | |
(* ========================================================================= *) | |
needs "Multivariate/realanalysis.ml";; | |
prioritize_vector();; | |
(* ------------------------------------------------------------------------- *) | |
(* Pythagoras's theorem is almost immediate. *) | |
(* ------------------------------------------------------------------------- *) | |
let PYTHAGORAS = prove | |
(`!A B C:real^N. | |
orthogonal (A - B) (C - B) | |
==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`, | |
REWRITE_TAC[NORM_POW_2; orthogonal; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN | |
CONV_TAC REAL_RING);; | |
(* ------------------------------------------------------------------------- *) | |
(* Angle between vectors (always 0 <= angle <= pi). *) | |
(* ------------------------------------------------------------------------- *) | |
let vector_angle = new_definition | |
`vector_angle x y = if x = vec 0 \/ y = vec 0 then pi / &2 | |
else acs((x dot y) / (norm x * norm y))`;; | |
let VECTOR_ANGLE_LINEAR_IMAGE_EQ = prove | |
(`!f x y. linear f /\ (!x. norm(f x) = norm x) | |
==> (vector_angle (f x) (f y) = vector_angle x y)`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[vector_angle; GSYM NORM_EQ_0] THEN | |
ASM_MESON_TAC[PRESERVES_NORM_PRESERVES_DOT]);; | |
add_linear_invariants [VECTOR_ANGLE_LINEAR_IMAGE_EQ];; | |
let VECTOR_ANGLE_ORTHOGONAL_TRANSFORMATION = prove | |
(`!f x y:real^N. | |
orthogonal_transformation f | |
==> vector_angle (f x) (f y) = vector_angle x y`, | |
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION; VECTOR_ANGLE_LINEAR_IMAGE_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic properties of vector angles. *) | |
(* ------------------------------------------------------------------------- *) | |
let VECTOR_ANGLE_REFL = prove | |
(`!x. vector_angle x x = if x = vec 0 then pi / &2 else &0`, | |
GEN_TAC THEN REWRITE_TAC[vector_angle; DISJ_ACI] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM NORM_POW_2; REAL_POW_2] THEN | |
ASM_SIMP_TAC[REAL_DIV_REFL; REAL_ENTIRE; NORM_EQ_0; ACS_1]);; | |
let VECTOR_ANGLE_SYM = prove | |
(`!x y. vector_angle x y = vector_angle y x`, | |
REWRITE_TAC[vector_angle; DISJ_SYM; DOT_SYM; REAL_MUL_SYM]);; | |
let VECTOR_ANGLE_LMUL = prove | |
(`!a x y:real^N. | |
vector_angle (a % x) y = | |
if a = &0 then pi / &2 | |
else if &0 <= a then vector_angle x y | |
else pi - vector_angle x y`, | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[vector_angle; VECTOR_MUL_EQ_0] THEN | |
ASM_CASES_TAC `x:real^N = vec 0 \/ y:real^N = vec 0` THEN | |
ASM_REWRITE_TAC[] THENL [REAL_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[NORM_MUL; DOT_LMUL; real_div; REAL_INV_MUL; real_abs] THEN | |
COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[REAL_INV_NEG; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN | |
ASM_SIMP_TAC[REAL_FIELD | |
`~(a = &0) ==> (a * x) * (inv a * y) * z = x * y * z`] THEN | |
MATCH_MP_TAC ACS_NEG THEN | |
REWRITE_TAC[GSYM REAL_ABS_BOUNDS; GSYM REAL_INV_MUL] THEN | |
REWRITE_TAC[GSYM real_div; NORM_CAUCHY_SCHWARZ_DIV]);; | |
let VECTOR_ANGLE_RMUL = prove | |
(`!a x y:real^N. | |
vector_angle x (a % y) = | |
if a = &0 then pi / &2 | |
else if &0 <= a then vector_angle x y | |
else pi - vector_angle x y`, | |
ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN | |
REWRITE_TAC[VECTOR_ANGLE_LMUL]);; | |
let VECTOR_ANGLE_LNEG = prove | |
(`!x y. vector_angle (--x) y = pi - vector_angle x y`, | |
REWRITE_TAC[VECTOR_ARITH `--x = -- &1 % x`; VECTOR_ANGLE_LMUL] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV);; | |
let VECTOR_ANGLE_RNEG = prove | |
(`!x y. vector_angle x (--y) = pi - vector_angle x y`, | |
ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN REWRITE_TAC[VECTOR_ANGLE_LNEG]);; | |
let VECTOR_ANGLE_NEG2 = prove | |
(`!x y. vector_angle (--x) (--y) = vector_angle x y`, | |
REWRITE_TAC[VECTOR_ANGLE_LNEG; VECTOR_ANGLE_RNEG] THEN REAL_ARITH_TAC);; | |
let SIN_VECTOR_ANGLE_LMUL = prove | |
(`!a x y:real^N. | |
sin(vector_angle (a % x) y) = | |
if a = &0 then &1 else sin(vector_angle x y)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[VECTOR_ANGLE_LMUL] THEN | |
ASM_CASES_TAC `a = &0` THEN ASM_REWRITE_TAC[SIN_PI2] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[SIN_SUB; SIN_PI; COS_PI] THEN | |
REAL_ARITH_TAC);; | |
let SIN_VECTOR_ANGLE_RMUL = prove | |
(`!a x y:real^N. | |
sin(vector_angle x (a % y)) = | |
if a = &0 then &1 else sin(vector_angle x y)`, | |
ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN | |
REWRITE_TAC[SIN_VECTOR_ANGLE_LMUL]);; | |
let VECTOR_ANGLE = prove | |
(`!x y:real^N. x dot y = norm(x) * norm(y) * cos(vector_angle x y)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[vector_angle] THEN | |
ASM_CASES_TAC `x:real^N = vec 0` THEN | |
ASM_REWRITE_TAC[DOT_LZERO; NORM_0; REAL_MUL_LZERO] THEN | |
ASM_CASES_TAC `y:real^N = vec 0` THEN | |
ASM_REWRITE_TAC[DOT_RZERO; NORM_0; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c:real = c * a * b`] THEN | |
ASM_SIMP_TAC[GSYM REAL_EQ_LDIV_EQ; REAL_LT_MUL; NORM_POS_LT] THEN | |
MATCH_MP_TAC(GSYM COS_ACS) THEN | |
ASM_REWRITE_TAC[REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV]);; | |
let VECTOR_ANGLE_RANGE = prove | |
(`!x y:real^N. &0 <= vector_angle x y /\ vector_angle x y <= pi`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[vector_angle] THEN COND_CASES_TAC THENL | |
[MP_TAC PI_POS THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN MATCH_MP_TAC ACS_BOUNDS THEN | |
ASM_REWRITE_TAC[REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV]);; | |
let ORTHOGONAL_VECTOR_ANGLE = prove | |
(`!x y:real^N. orthogonal x y <=> vector_angle x y = pi / &2`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[orthogonal; vector_angle] THEN | |
ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_LZERO] THEN | |
ASM_CASES_TAC `y:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_RZERO] THEN | |
EQ_TAC THENL | |
[SIMP_TAC[real_div; REAL_MUL_LZERO] THEN DISCH_TAC THEN | |
REWRITE_TAC[GSYM real_div; GSYM COS_PI2] THEN | |
MATCH_MP_TAC ACS_COS THEN MP_TAC PI_POS THEN REAL_ARITH_TAC; | |
DISCH_THEN(MP_TAC o AP_TERM `cos`) THEN | |
SIMP_TAC[COS_ACS; REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV; COS_PI2] THEN | |
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_LT_MUL; NORM_POS_LT; REAL_MUL_LZERO]]);; | |
let VECTOR_ANGLE_EQ_0 = prove | |
(`!x y:real^N. vector_angle x y = &0 <=> | |
~(x = vec 0) /\ ~(y = vec 0) /\ norm(x) % y = norm(y) % x`, | |
REPEAT GEN_TAC THEN | |
MAP_EVERY ASM_CASES_TAC [`x:real^N = vec 0`; `y:real^N = vec 0`] THEN | |
ASM_SIMP_TAC[vector_angle; PI_NZ; REAL_ARITH `x / &2 = &0 <=> x = &0`] THEN | |
REWRITE_TAC[GSYM NORM_CAUCHY_SCHWARZ_EQ] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_MUL_LID] THEN | |
ASM_SIMP_TAC[GSYM REAL_EQ_LDIV_EQ; NORM_POS_LT; REAL_LT_MUL] THEN | |
MESON_TAC[ACS_1; COS_ACS; REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV; COS_0]);; | |
let VECTOR_ANGLE_EQ_PI = prove | |
(`!x y:real^N. vector_angle x y = pi <=> | |
~(x = vec 0) /\ ~(y = vec 0) /\ | |
norm(x) % y + norm(y) % x = vec 0`, | |
REPEAT GEN_TAC THEN | |
MP_TAC(ISPECL [`x:real^N`; `--y:real^N`] VECTOR_ANGLE_EQ_0) THEN | |
SIMP_TAC[VECTOR_ANGLE_RNEG; REAL_ARITH `pi - x = &0 <=> x = pi`] THEN | |
STRIP_TAC THEN | |
REWRITE_TAC[NORM_NEG; VECTOR_ARITH `--x = vec 0 <=> x = vec 0`] THEN | |
AP_TERM_TAC THEN AP_TERM_TAC THEN VECTOR_ARITH_TAC);; | |
let VECTOR_ANGLE_EQ_0_DIST = prove | |
(`!x y:real^N. vector_angle x y = &0 <=> | |
~(x = vec 0) /\ ~(y = vec 0) /\ norm(x + y) = norm x + norm y`, | |
REWRITE_TAC[VECTOR_ANGLE_EQ_0; GSYM NORM_TRIANGLE_EQ]);; | |
let VECTOR_ANGLE_EQ_PI_DIST = prove | |
(`!x y:real^N. vector_angle x y = pi <=> | |
~(x = vec 0) /\ ~(y = vec 0) /\ norm(x - y) = norm x + norm y`, | |
REPEAT GEN_TAC THEN | |
MP_TAC(ISPECL [`x:real^N`; `--y:real^N`] VECTOR_ANGLE_EQ_0_DIST) THEN | |
SIMP_TAC[VECTOR_ANGLE_RNEG; REAL_ARITH `pi - x = &0 <=> x = pi`] THEN | |
STRIP_TAC THEN REWRITE_TAC[NORM_NEG] THEN NORM_ARITH_TAC);; | |
let SIN_VECTOR_ANGLE_POS = prove | |
(`!v w. &0 <= sin(vector_angle v w)`, | |
SIMP_TAC[SIN_POS_PI_LE; VECTOR_ANGLE_RANGE]);; | |
let SIN_VECTOR_ANGLE_EQ_0 = prove | |
(`!x y. sin(vector_angle x y) = &0 <=> | |
vector_angle x y = &0 \/ vector_angle x y = pi`, | |
MESON_TAC[SIN_POS_PI; VECTOR_ANGLE_RANGE; REAL_LT_LE; SIN_0; SIN_PI]);; | |
let ASN_SIN_VECTOR_ANGLE = prove | |
(`!x y:real^N. | |
asn(sin(vector_angle x y)) = | |
if vector_angle x y <= pi / &2 then vector_angle x y | |
else pi - vector_angle x y`, | |
REPEAT GEN_TAC THEN COND_CASES_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `asn(sin(pi - vector_angle (x:real^N) y))` THEN CONJ_TAC THENL | |
[AP_TERM_TAC THEN REWRITE_TAC[SIN_SUB; SIN_PI; COS_PI] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC]] THEN | |
MATCH_MP_TAC ASN_SIN THEN | |
MP_TAC(ISPECL [`x:real^N`; `y:real^N`] VECTOR_ANGLE_RANGE) THEN | |
ASM_REAL_ARITH_TAC);; | |
let SIN_VECTOR_ANGLE_EQ = prove | |
(`!x y w z. | |
sin(vector_angle x y) = sin(vector_angle w z) <=> | |
vector_angle x y = vector_angle w z \/ | |
vector_angle x y = pi - vector_angle w z`, | |
REPEAT GEN_TAC THEN EQ_TAC THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[SIN_SUB; SIN_PI; COS_PI] THENL | |
[ALL_TAC; REAL_ARITH_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o AP_TERM `asn`) THEN | |
REWRITE_TAC[ASN_SIN_VECTOR_ANGLE] THEN REAL_ARITH_TAC);; | |
let CONTINUOUS_WITHIN_CX_VECTOR_ANGLE_COMPOSE = prove | |
(`!f:real^M->real^N g x s. | |
~(f x = vec 0) /\ ~(g x = vec 0) /\ | |
f continuous (at x within s) /\ | |
g continuous (at x within s) | |
==> (\x. Cx(vector_angle (f x) (g x))) continuous (at x within s)`, | |
REPEAT STRIP_TAC THEN | |
ASM_CASES_TAC `trivial_limit(at (x:real^M) within s)` THEN | |
ASM_SIMP_TAC[CONTINUOUS_TRIVIAL_LIMIT; vector_angle] THEN | |
SUBGOAL_THEN | |
`(cacs o (\x. Cx(((f x:real^N) dot g x) / (norm(f x) * norm(g x))))) | |
continuous (at (x:real^M) within s)` | |
MP_TAC THENL | |
[MATCH_MP_TAC CONTINUOUS_WITHIN_COMPOSE THEN CONJ_TAC THENL | |
[REWRITE_TAC[CX_DIV; CX_MUL] THEN REWRITE_TAC[WITHIN_UNIV] THEN | |
MATCH_MP_TAC CONTINUOUS_COMPLEX_DIV THEN | |
ASM_SIMP_TAC[NETLIMIT_WITHIN; COMPLEX_ENTIRE; CX_INJ; NORM_EQ_0] THEN | |
REWRITE_TAC[CONTINUOUS_CX_LIFT; GSYM CX_MUL; LIFT_CMUL] THEN | |
ASM_SIMP_TAC[CONTINUOUS_LIFT_DOT2] THEN | |
MATCH_MP_TAC CONTINUOUS_MUL THEN | |
ASM_SIMP_TAC[CONTINUOUS_LIFT_NORM_COMPOSE; o_DEF]; | |
MATCH_MP_TAC CONTINUOUS_WITHIN_SUBSET THEN | |
EXISTS_TAC `{z | real z /\ abs(Re z) <= &1}` THEN | |
REWRITE_TAC[CONTINUOUS_WITHIN_CACS_REAL] THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV; IN_ELIM_THM] THEN | |
REWRITE_TAC[REAL_CX; RE_CX; NORM_CAUCHY_SCHWARZ_DIV]]; | |
ASM_SIMP_TAC[CONTINUOUS_WITHIN; CX_ACS; o_DEF; | |
NORM_CAUCHY_SCHWARZ_DIV] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN | |
SUBGOAL_THEN | |
`eventually (\y. ~((f:real^M->real^N) y = vec 0) /\ | |
~((g:real^M->real^N) y = vec 0)) | |
(at x within s)` | |
MP_TAC THENL | |
[REWRITE_TAC[EVENTUALLY_AND] THEN CONJ_TAC THENL | |
[UNDISCH_TAC `(f:real^M->real^N) continuous (at x within s)`; | |
UNDISCH_TAC `(g:real^M->real^N) continuous (at x within s)`] THEN | |
REWRITE_TAC[CONTINUOUS_WITHIN; tendsto] THENL | |
[DISCH_THEN(MP_TAC o SPEC `norm((f:real^M->real^N) x)`); | |
DISCH_THEN(MP_TAC o SPEC `norm((g:real^M->real^N) x)`)] THEN | |
ASM_REWRITE_TAC[NORM_POS_LT] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN | |
REWRITE_TAC[] THEN CONV_TAC NORM_ARITH; | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN | |
SIMP_TAC[CX_ACS; NORM_CAUCHY_SCHWARZ_DIV]]]);; | |
let CONTINUOUS_AT_CX_VECTOR_ANGLE = prove | |
(`!c x:real^N. ~(x = vec 0) ==> (Cx o vector_angle c) continuous (at x)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[o_DEF; vector_angle] THEN | |
ASM_CASES_TAC `c:real^N = vec 0` THEN ASM_REWRITE_TAC[CONTINUOUS_CONST] THEN | |
MATCH_MP_TAC CONTINUOUS_TRANSFORM_AT THEN | |
MAP_EVERY EXISTS_TAC [`\x:real^N. cacs(Cx((c dot x) / (norm c * norm x)))`; | |
`norm(x:real^N)`] THEN | |
ASM_REWRITE_TAC[NORM_POS_LT] THEN CONJ_TAC THENL | |
[X_GEN_TAC `z:real^N` THEN DISCH_TAC THEN COND_CASES_TAC THENL | |
[ASM_MESON_TAC[NORM_ARITH `~(dist(vec 0,x) < norm x)`]; ALL_TAC] THEN | |
MATCH_MP_TAC(GSYM CX_ACS) THEN REWRITE_TAC[NORM_CAUCHY_SCHWARZ_DIV]; | |
ALL_TAC] THEN | |
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN | |
MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_WITHIN_COMPOSE) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[CX_DIV; CX_MUL] THEN REWRITE_TAC[WITHIN_UNIV] THEN | |
MATCH_MP_TAC CONTINUOUS_COMPLEX_DIV THEN | |
ASM_REWRITE_TAC[NETLIMIT_AT; COMPLEX_ENTIRE; CX_INJ; NORM_EQ_0] THEN | |
SIMP_TAC[CONTINUOUS_COMPLEX_MUL; CONTINUOUS_CONST; | |
CONTINUOUS_AT_CX_NORM; CONTINUOUS_AT_CX_DOT]; | |
MATCH_MP_TAC CONTINUOUS_WITHIN_SUBSET THEN | |
EXISTS_TAC `{z | real z /\ abs(Re z) <= &1}` THEN | |
REWRITE_TAC[CONTINUOUS_WITHIN_CACS_REAL] THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV; IN_ELIM_THM] THEN | |
REWRITE_TAC[REAL_CX; RE_CX; NORM_CAUCHY_SCHWARZ_DIV]]);; | |
let CONTINUOUS_WITHIN_CX_VECTOR_ANGLE = prove | |
(`!c x:real^N s. | |
~(x = vec 0) ==> (Cx o vector_angle c) continuous (at x within s)`, | |
SIMP_TAC[CONTINUOUS_AT_WITHIN; CONTINUOUS_AT_CX_VECTOR_ANGLE]);; | |
let REAL_CONTINUOUS_AT_VECTOR_ANGLE = prove | |
(`!c x:real^N. ~(x = vec 0) ==> (vector_angle c) real_continuous (at x)`, | |
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS; CONTINUOUS_AT_CX_VECTOR_ANGLE]);; | |
let REAL_CONTINUOUS_WITHIN_VECTOR_ANGLE = prove | |
(`!c s x:real^N. ~(x = vec 0) | |
==> (vector_angle c) real_continuous (at x within s)`, | |
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS; CONTINUOUS_WITHIN_CX_VECTOR_ANGLE]);; | |
let CONTINUOUS_ON_CX_VECTOR_ANGLE = prove | |
(`!s. ~(vec 0 IN s) ==> (Cx o vector_angle c) continuous_on s`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN | |
ASM_MESON_TAC[CONTINUOUS_WITHIN_CX_VECTOR_ANGLE]);; | |
let VECTOR_ANGLE_EQ = prove | |
(`!u v x y. ~(u = vec 0) /\ ~(v = vec 0) /\ ~(x = vec 0) /\ ~(y = vec 0) | |
==> (vector_angle u v = vector_angle x y <=> | |
(x dot y) * norm(u) * norm(v) = | |
(u dot v) * norm(x) * norm(y))`, | |
SIMP_TAC[vector_angle; NORM_EQ_0; REAL_FIELD | |
`~(u = &0) /\ ~(v = &0) /\ ~(x = &0) /\ ~(y = &0) | |
==> (a * u * v = b * x * y <=> a / (x * y) = b / (u * v))`] THEN | |
REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `cos`) THEN | |
SIMP_TAC[COS_ACS; NORM_CAUCHY_SCHWARZ_DIV; REAL_BOUNDS_LE]);; | |
let COS_VECTOR_ANGLE_EQ = prove | |
(`!u v x y. | |
cos(vector_angle u v) = cos(vector_angle x y) <=> | |
vector_angle u v = vector_angle x y`, | |
MESON_TAC[ACS_COS; VECTOR_ANGLE_RANGE]);; | |
let COLLINEAR_VECTOR_ANGLE = prove | |
(`!x y. ~(x = vec 0) /\ ~(y = vec 0) | |
==> (collinear {vec 0,x,y} <=> | |
vector_angle x y = &0 \/ vector_angle x y = pi)`, | |
REWRITE_TAC[GSYM NORM_CAUCHY_SCHWARZ_EQUAL; NORM_CAUCHY_SCHWARZ_ABS_EQ; | |
VECTOR_ANGLE_EQ_0; VECTOR_ANGLE_EQ_PI] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN BINOP_TAC THEN | |
VECTOR_ARITH_TAC);; | |
let COLLINEAR_SIN_VECTOR_ANGLE = prove | |
(`!x y. ~(x = vec 0) /\ ~(y = vec 0) | |
==> (collinear {vec 0,x,y} <=> sin(vector_angle x y) = &0)`, | |
REWRITE_TAC[SIN_VECTOR_ANGLE_EQ_0; COLLINEAR_VECTOR_ANGLE]);; | |
let COLLINEAR_SIN_VECTOR_ANGLE_IMP = prove | |
(`!x y. sin(vector_angle x y) = &0 | |
==> ~(x = vec 0) /\ ~(y = vec 0) /\ collinear {vec 0,x,y}`, | |
MESON_TAC[COLLINEAR_SIN_VECTOR_ANGLE; SIN_VECTOR_ANGLE_EQ_0; | |
VECTOR_ANGLE_EQ_0_DIST; VECTOR_ANGLE_EQ_PI_DIST]);; | |
let VECTOR_ANGLE_EQ_0_RIGHT = prove | |
(`!x y z:real^N. vector_angle x y = &0 | |
==> (vector_angle x z = vector_angle y z)`, | |
REWRITE_TAC[VECTOR_ANGLE_EQ_0] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `vector_angle (norm(x:real^N) % y) (z:real^N)` THEN CONJ_TAC THENL | |
[ASM_REWRITE_TAC[] THEN | |
ASM_REWRITE_TAC[VECTOR_ANGLE_LMUL; NORM_EQ_0; NORM_POS_LE]; | |
REWRITE_TAC[VECTOR_ANGLE_LMUL] THEN | |
ASM_REWRITE_TAC[NORM_EQ_0; NORM_POS_LE]]);; | |
let VECTOR_ANGLE_EQ_0_LEFT = prove | |
(`!x y z:real^N. vector_angle x y = &0 | |
==> (vector_angle z x = vector_angle z y)`, | |
MESON_TAC[VECTOR_ANGLE_EQ_0_RIGHT; VECTOR_ANGLE_SYM]);; | |
let VECTOR_ANGLE_EQ_PI_RIGHT = prove | |
(`!x y z:real^N. vector_angle x y = pi | |
==> (vector_angle x z = pi - vector_angle y z)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`--x:real^N`; `y:real^N`; `z:real^N`] | |
VECTOR_ANGLE_EQ_0_RIGHT) THEN | |
ASM_REWRITE_TAC[VECTOR_ANGLE_LNEG] THEN REAL_ARITH_TAC);; | |
let VECTOR_ANGLE_EQ_PI_LEFT = prove | |
(`!x y z:real^N. vector_angle x y = pi | |
==> (vector_angle z x = pi - vector_angle z y)`, | |
MESON_TAC[VECTOR_ANGLE_EQ_PI_RIGHT; VECTOR_ANGLE_SYM]);; | |
let COS_VECTOR_ANGLE = prove | |
(`!x y:real^N. | |
cos(vector_angle x y) = if x = vec 0 \/ y = vec 0 then &0 | |
else (x dot y) / (norm x * norm y)`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `x:real^N = vec 0` THENL | |
[ASM_REWRITE_TAC[vector_angle; COS_PI2]; ALL_TAC] THEN | |
ASM_CASES_TAC `y:real^N = vec 0` THENL | |
[ASM_REWRITE_TAC[vector_angle; COS_PI2]; ALL_TAC] THEN | |
ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_LT_MUL; NORM_POS_LT; VECTOR_ANGLE] THEN | |
REAL_ARITH_TAC);; | |
let SIN_VECTOR_ANGLE = prove | |
(`!x y:real^N. | |
sin(vector_angle x y) = | |
if x = vec 0 \/ y = vec 0 then &1 | |
else sqrt(&1 - ((x dot y) / (norm x * norm y)) pow 2)`, | |
SIMP_TAC[SIN_COS_SQRT; SIN_VECTOR_ANGLE_POS; COS_VECTOR_ANGLE] THEN | |
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[SQRT_1]);; | |
let SIN_SQUARED_VECTOR_ANGLE = prove | |
(`!x y:real^N. | |
sin(vector_angle x y) pow 2 = | |
if x = vec 0 \/ y = vec 0 then &1 | |
else &1 - ((x dot y) / (norm x * norm y)) pow 2`, | |
REPEAT GEN_TAC THEN REWRITE_TAC | |
[REWRITE_RULE [REAL_ARITH `s + c = &1 <=> s = &1 - c`] SIN_CIRCLE] THEN | |
REWRITE_TAC[COS_VECTOR_ANGLE] THEN REAL_ARITH_TAC);; | |
let VECTOR_ANGLE_COMPLEX_LMUL = prove | |
(`!a. ~(a = Cx(&0)) | |
==> vector_angle (a * x) (a * y) = vector_angle x y`, | |
REPEAT STRIP_TAC THEN | |
ASM_CASES_TAC `x = Cx(&0)` THENL | |
[ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; vector_angle; COMPLEX_VEC_0]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `y = Cx(&0)` THENL | |
[ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; vector_angle; COMPLEX_VEC_0]; | |
ALL_TAC] THEN | |
MP_TAC(ISPECL | |
[`a * x:complex`; `a * y:complex`; `x:complex`; `y:complex`] | |
VECTOR_ANGLE_EQ) THEN | |
ASM_REWRITE_TAC[COMPLEX_VEC_0; COMPLEX_ENTIRE] THEN | |
DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC(REAL_RING | |
`a pow 2 * xy:real = d ==> xy * (a * x) * (a * y) = d * x * y`) THEN | |
REWRITE_TAC[NORM_POW_2] THEN | |
REWRITE_TAC[DOT_2; complex_mul; GSYM RE_DEF; GSYM IM_DEF; RE; IM] THEN | |
REAL_ARITH_TAC);; | |
let VECTOR_ANGLE_1 = prove | |
(`!x. vector_angle x (Cx(&1)) = acs(Re x / norm x)`, | |
GEN_TAC THEN | |
SIMP_TAC[vector_angle; COMPLEX_VEC_0; CX_INJ; REAL_OF_NUM_EQ; ARITH_EQ] THEN | |
COND_CASES_TAC THENL | |
[ASM_REWRITE_TAC[real_div; RE_CX; ACS_0; REAL_MUL_LZERO]; ALL_TAC] THEN | |
REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM; REAL_MUL_RID] THEN | |
REWRITE_TAC[DOT_2; GSYM RE_DEF; GSYM IM_DEF; RE_CX; IM_CX] THEN | |
AP_TERM_TAC THEN REAL_ARITH_TAC);; | |
let ARG_EQ_VECTOR_ANGLE_1 = prove | |
(`!z. ~(z = Cx(&0)) /\ &0 <= Im z ==> Arg z = vector_angle z (Cx(&1))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[VECTOR_ANGLE_1] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV o RAND_CONV) [ARG] THEN | |
REWRITE_TAC[RE_MUL_CX; RE_CEXP; RE_II; IM_MUL_II; IM_CX; RE_CX] THEN | |
REWRITE_TAC[REAL_MUL_LZERO; REAL_EXP_0; REAL_MUL_LID] THEN | |
ASM_SIMP_TAC[COMPLEX_NORM_ZERO; REAL_FIELD | |
`~(z = &0) ==> (z * x) / z = x`] THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC ACS_COS THEN | |
ASM_REWRITE_TAC[ARG; ARG_LE_PI]);; | |
let VECTOR_ANGLE_ARG = prove | |
(`!w z. ~(w = Cx(&0)) /\ ~(z = Cx(&0)) | |
==> vector_angle w z = if &0 <= Im(z / w) then Arg(z / w) | |
else &2 * pi - Arg(z / w)`, | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THENL | |
[SUBGOAL_THEN `z = w * (z / w) /\ w = w * Cx(&1)` MP_TAC THENL | |
[REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD; ALL_TAC]; | |
SUBGOAL_THEN `w = z * (w / z) /\ z = z * Cx(&1)` MP_TAC THENL | |
[REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD; ALL_TAC]] THEN | |
DISCH_THEN(fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th]) THEN | |
ASM_SIMP_TAC[VECTOR_ANGLE_COMPLEX_LMUL] THENL | |
[ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN CONV_TAC SYM_CONV THEN | |
MATCH_MP_TAC ARG_EQ_VECTOR_ANGLE_1 THEN ASM_REWRITE_TAC[] THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD; | |
MP_TAC(ISPEC `z / w:complex` ARG_INV) THEN ANTS_TAC THENL | |
[ASM_MESON_TAC[real; REAL_LE_REFL]; DISCH_THEN(SUBST1_TAC o SYM)] THEN | |
REWRITE_TAC[COMPLEX_INV_DIV] THEN CONV_TAC SYM_CONV THEN | |
MATCH_MP_TAC ARG_EQ_VECTOR_ANGLE_1 THEN CONJ_TAC THENL | |
[REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD; | |
ONCE_REWRITE_TAC[GSYM COMPLEX_INV_DIV] THEN | |
REWRITE_TAC[IM_COMPLEX_INV_GE_0] THEN ASM_REAL_ARITH_TAC]]);; | |
let VECTOR_ANGLE_PRESERVING_EQ_SIMILARITY = prove | |
(`!f:real^N->real^N. | |
linear f /\ (!x y. vector_angle (f x) (f y) = vector_angle x y) <=> | |
?c g. ~(c = &0) /\ orthogonal_transformation g /\ f = \z. c % g z`, | |
REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL | |
[ALL_TAC; | |
ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_LINEAR; LINEAR_COMPOSE_CMUL] THEN | |
ASM_SIMP_TAC[VECTOR_ANGLE_LMUL; VECTOR_ANGLE_RMUL] THEN | |
REWRITE_TAC[REAL_ARITH `pi - (pi - x) = x`; COND_ID] THEN | |
ASM_MESON_TAC[VECTOR_ANGLE_ORTHOGONAL_TRANSFORMATION]] THEN | |
MP_TAC(ISPEC `f:real^N->real^N` ORTHOGONALITY_PRESERVING_EQ_SIMILARITY) THEN | |
ASM_REWRITE_TAC[ORTHOGONAL_VECTOR_ANGLE] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^N->real^N` THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`basis 1:real^N`; `basis 1:real^N`]) THEN | |
ASM_REWRITE_TAC[VECTOR_ANGLE_REFL; VECTOR_MUL_LZERO] THEN | |
SIMP_TAC[BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL] THEN | |
MP_TAC PI_POS THEN REAL_ARITH_TAC);; | |
let VECTOR_ANGLE_PRESERVING_EQ_SIMILARITY_ALT = prove | |
(`!f:real^N->real^N. | |
linear f /\ (!x y. vector_angle (f x) (f y) = vector_angle x y) <=> | |
?c g. &0 < c /\ orthogonal_transformation g /\ f = \z. c % g z`, | |
GEN_TAC THEN REWRITE_TAC[VECTOR_ANGLE_PRESERVING_EQ_SIMILARITY] THEN | |
EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM]; MESON_TAC[REAL_LT_REFL]] THEN | |
MAP_EVERY X_GEN_TAC [`c:real`; `g:real^N->real^N`] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH | |
`~(c = &0) ==> &0 < c \/ &0 < --c`)) | |
THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
MAP_EVERY EXISTS_TAC [`--c:real`; `\x. --((g:real^N->real^N) x)`] THEN | |
ASM_REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_NEG] THEN | |
REWRITE_TAC[VECTOR_MUL_LNEG; VECTOR_MUL_RNEG; VECTOR_NEG_NEG]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Traditional geometric notion of angle (always 0 <= theta <= pi). *) | |
(* ------------------------------------------------------------------------- *) | |
let angle = new_definition | |
`angle(a,b,c) = vector_angle (a - b) (c - b)`;; | |
let ANGLE_LINEAR_IMAGE_EQ = prove | |
(`!f a b c. | |
linear f /\ (!x. norm(f x) = norm x) | |
==> angle(f a,f b,f c) = angle(a,b,c)`, | |
SIMP_TAC[angle; GSYM LINEAR_SUB; VECTOR_ANGLE_LINEAR_IMAGE_EQ]);; | |
add_linear_invariants [ANGLE_LINEAR_IMAGE_EQ];; | |
let ANGLE_TRANSLATION_EQ = prove | |
(`!a b c d. angle(a + b,a + c,a + d) = angle(b,c,d)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[angle] THEN | |
BINOP_TAC THEN VECTOR_ARITH_TAC);; | |
add_translation_invariants [ANGLE_TRANSLATION_EQ];; | |
let VECTOR_ANGLE_ANGLE = prove | |
(`vector_angle x y = angle(x,vec 0,y)`, | |
REWRITE_TAC[angle; VECTOR_SUB_RZERO]);; | |
let ANGLE_EQ_PI_DIST = prove | |
(`!A B C:real^N. | |
angle(A,B,C) = pi <=> | |
~(A = B) /\ ~(C = B) /\ dist(A,C) = dist(A,B) + dist(B,C)`, | |
REWRITE_TAC[angle; VECTOR_ANGLE_EQ_PI_DIST] THEN NORM_ARITH_TAC);; | |
let SIN_ANGLE_POS = prove | |
(`!A B C. &0 <= sin(angle(A,B,C))`, | |
REWRITE_TAC[angle; SIN_VECTOR_ANGLE_POS]);; | |
let ANGLE = prove | |
(`!A B C. (A - C) dot (B - C) = dist(A,C) * dist(B,C) * cos(angle(A,C,B))`, | |
REWRITE_TAC[angle; dist; GSYM VECTOR_ANGLE]);; | |
let ANGLE_REFL = prove | |
(`!A B. angle(A,A,B) = pi / &2 /\ angle(B,A,A) = pi / &2`, | |
REWRITE_TAC[angle; vector_angle; VECTOR_SUB_REFL]);; | |
let ANGLE_REFL_MID = prove | |
(`!A B. ~(A = B) ==> angle(A,B,A) = &0`, | |
SIMP_TAC[angle; vector_angle; VECTOR_SUB_EQ; GSYM NORM_POW_2; ARITH; | |
GSYM REAL_POW_2; REAL_DIV_REFL; ACS_1; REAL_POW_EQ_0; NORM_EQ_0]);; | |
let ANGLE_SYM = prove | |
(`!A B C. angle(A,B,C) = angle(C,B,A)`, | |
REWRITE_TAC[angle; vector_angle; VECTOR_SUB_EQ; DISJ_SYM; | |
REAL_MUL_SYM; DOT_SYM]);; | |
let ANGLE_RANGE = prove | |
(`!A B C. &0 <= angle(A,B,C) /\ angle(A,B,C) <= pi`, | |
REWRITE_TAC[angle; VECTOR_ANGLE_RANGE]);; | |
let COS_ANGLE_EQ = prove | |
(`!a b c a' b' c'. | |
cos(angle(a,b,c)) = cos(angle(a',b',c')) <=> | |
angle(a,b,c) = angle(a',b',c')`, | |
REWRITE_TAC[angle; COS_VECTOR_ANGLE_EQ]);; | |
let ANGLE_EQ = prove | |
(`!a b c a' b' c'. | |
~(a = b) /\ ~(c = b) /\ ~(a' = b') /\ ~(c' = b') | |
==> (angle(a,b,c) = angle(a',b',c') <=> | |
((a' - b') dot (c' - b')) * norm (a - b) * norm (c - b) = | |
((a - b) dot (c - b)) * norm (a' - b') * norm (c' - b'))`, | |
SIMP_TAC[angle; VECTOR_ANGLE_EQ; VECTOR_SUB_EQ]);; | |
let SIN_ANGLE_EQ_0 = prove | |
(`!A B C. sin(angle(A,B,C)) = &0 <=> angle(A,B,C) = &0 \/ angle(A,B,C) = pi`, | |
REWRITE_TAC[angle; SIN_VECTOR_ANGLE_EQ_0]);; | |
let SIN_ANGLE_EQ = prove | |
(`!A B C A' B' C'. sin(angle(A,B,C)) = sin(angle(A',B',C')) <=> | |
angle(A,B,C) = angle(A',B',C') \/ | |
angle(A,B,C) = pi - angle(A',B',C')`, | |
REWRITE_TAC[angle; SIN_VECTOR_ANGLE_EQ]);; | |
let COLLINEAR_ANGLE = prove | |
(`!A B C. ~(A = B) /\ ~(B = C) | |
==> (collinear {A,B,C} <=> angle(A,B,C) = &0 \/ angle(A,B,C) = pi)`, | |
ONCE_REWRITE_TAC[COLLINEAR_3] THEN | |
SIMP_TAC[COLLINEAR_VECTOR_ANGLE; VECTOR_SUB_EQ; angle]);; | |
let COLLINEAR_SIN_ANGLE = prove | |
(`!A B C. ~(A = B) /\ ~(B = C) | |
==> (collinear {A,B,C} <=> sin(angle(A,B,C)) = &0)`, | |
REWRITE_TAC[SIN_ANGLE_EQ_0; COLLINEAR_ANGLE]);; | |
let COLLINEAR_SIN_ANGLE_IMP = prove | |
(`!A B C. sin(angle(A,B,C)) = &0 | |
==> ~(A = B) /\ ~(B = C) /\ collinear {A,B,C}`, | |
REPEAT GEN_TAC THEN | |
ONCE_REWRITE_TAC[COLLINEAR_3] THEN REWRITE_TAC[angle] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP COLLINEAR_SIN_VECTOR_ANGLE_IMP) THEN | |
SIMP_TAC[VECTOR_SUB_EQ]);; | |
let ANGLE_EQ_0_RIGHT = prove | |
(`!A B C. angle(A,B,C) = &0 ==> angle(A,B,D) = angle(C,B,D)`, | |
REWRITE_TAC[VECTOR_ANGLE_EQ_0_RIGHT; angle]);; | |
let ANGLE_EQ_0_LEFT = prove | |
(`!A B C. angle(A,B,C) = &0 ==> angle(D,B,A) = angle(D,B,C)`, | |
MESON_TAC[ANGLE_EQ_0_RIGHT; ANGLE_SYM]);; | |
let ANGLE_EQ_PI_RIGHT = prove | |
(`!A B C. angle(A,B,C) = pi ==> angle(D,B,A) = pi - angle(D,B,C)`, | |
REWRITE_TAC[VECTOR_ANGLE_EQ_PI_LEFT; angle]);; | |
let ANGLE_EQ_PI_LEFT = prove | |
(`!A B C. angle(A,B,C) = pi ==> angle(A,B,D) = pi - angle(C,B,D)`, | |
MESON_TAC[ANGLE_EQ_PI_RIGHT; ANGLE_SYM]);; | |
let COS_ANGLE = prove | |
(`!a b c. cos(angle(a,b,c)) = if a = b \/ c = b then &0 | |
else ((a - b) dot (c - b)) / | |
(norm(a - b) * norm(c - b))`, | |
REWRITE_TAC[angle; COS_VECTOR_ANGLE; VECTOR_SUB_EQ]);; | |
let SIN_ANGLE = prove | |
(`!a b c. sin(angle(a,b,c)) = | |
if a = b \/ c = b then &1 | |
else sqrt(&1 - (((a - b) dot (c - b)) / | |
(norm(a - b) * norm(c - b))) pow 2)`, | |
REWRITE_TAC[angle; SIN_VECTOR_ANGLE; VECTOR_SUB_EQ]);; | |
let SIN_SQUARED_ANGLE = prove | |
(`!a b c. sin(angle(a,b,c)) pow 2 = | |
if a = b \/ c = b then &1 | |
else &1 - (((a - b) dot (c - b)) / | |
(norm(a - b) * norm(c - b))) pow 2`, | |
REWRITE_TAC[angle; SIN_SQUARED_VECTOR_ANGLE; VECTOR_SUB_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The basic right angle triangles of elementary trigonometry. *) | |
(* ------------------------------------------------------------------------- *) | |
let COS_ADJACENT_HYPOTENUSE = prove | |
(`!A B C:real^N. | |
orthogonal (A - B) (C - B) | |
==> dist(A,C) * cos(angle(B,A,C)) = dist(A,B)`, | |
GEOM_ORIGIN_TAC `A:real^N` THEN REPEAT GEN_TAC THEN | |
REWRITE_TAC[DIST_0; angle; VECTOR_SUB_RZERO] THEN | |
REWRITE_TAC[ORTHOGONAL_LNEG; VECTOR_SUB_LZERO] THEN DISCH_TAC THEN | |
ASM_CASES_TAC `B:real^N = vec 0` THENL | |
[ASM_REWRITE_TAC[vector_angle; COS_PI2; NORM_0; REAL_MUL_RZERO]; | |
MATCH_MP_TAC(REAL_RING `~(b = &0) /\ b * x = b pow 2 ==> x = b`) THEN | |
ASM_REWRITE_TAC[NORM_EQ_0; GSYM VECTOR_ANGLE] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [orthogonal]) THEN | |
REWRITE_TAC[DOT_RSUB; NORM_POW_2] THEN REAL_ARITH_TAC]);; | |
let COS_ADJACENT_OVER_HYPOTENUSE = prove | |
(`!A B C:real^N. | |
orthogonal (A - B) (C - B) | |
==> cos(angle(B,A,C)) = dist(A,B) / dist(A,C)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^N = C` THENL | |
[ASM_REWRITE_TAC[DIST_REFL; real_div; REAL_INV_0; angle; VECTOR_SUB_REFL; | |
vector_angle] THEN | |
REWRITE_TAC[GSYM real_div; COS_PI2; REAL_MUL_RZERO]; | |
ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; DIST_POS_LT] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
REWRITE_TAC[COS_ADJACENT_HYPOTENUSE]]);; | |
let SIN_OPPOSITE_HYPOTENUSE = prove | |
(`!A B C:real^N. | |
orthogonal (A - B) (C - B) | |
==> dist(A,C) * sin(angle(B,A,C)) = dist(C,B)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^N = C` THEN | |
ASM_SIMP_TAC[ORTHOGONAL_REFL; VECTOR_SUB_EQ; DIST_REFL; REAL_MUL_LZERO] THEN | |
DISCH_TAC THEN CONV_TAC SYM_CONV THEN | |
REWRITE_TAC[dist; NORM_EQ_SQUARE] THEN | |
SIMP_TAC[REAL_LE_MUL; SIN_ANGLE_POS; NORM_POS_LE] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP COS_ADJACENT_HYPOTENUSE) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (REAL_RING | |
`x:real = y ==> x pow 2 = y pow 2`)) THEN | |
REWRITE_TAC[REAL_POW_MUL; GSYM NORM_POW_2; GSYM dist] THEN | |
MATCH_MP_TAC(REAL_RING | |
`d + e = h /\ s + c = &1 /\ ~(h = &0) ==> h * c = d ==> e = h * s`) THEN | |
ASM_REWRITE_TAC[SIN_CIRCLE; REAL_POW_EQ_0; DIST_EQ_0] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP PYTHAGORAS) THEN | |
REWRITE_TAC[GSYM dist; DIST_SYM] THEN REAL_ARITH_TAC);; | |
let SIN_OPPOSITE_OVER_HYPOTENUSE = prove | |
(`!A B C:real^N. | |
orthogonal (A - B) (C - B) /\ ~(A = C) | |
==> sin(angle(B,A,C)) = dist(C,B) / dist(A,C)`, | |
SIMP_TAC[REAL_EQ_RDIV_EQ; DIST_POS_LT] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
SIMP_TAC[SIN_OPPOSITE_HYPOTENUSE]);; | |
let TAN_OPPOSITE_ADJACENT = prove | |
(`!A B C:real^N. | |
orthogonal (A - B) (C - B) /\ ~(A = B) | |
==> dist(A,B) * tan(angle(B,A,C)) = dist(C,B)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[tan] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP COS_ADJACENT_HYPOTENUSE) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP SIN_OPPOSITE_HYPOTENUSE) THEN | |
ASM_CASES_TAC `cos (angle (B:real^N,A,C)) = &0` THENL | |
[ALL_TAC; POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD] THEN | |
ASM_REWRITE_TAC[REAL_MUL_RZERO; real_div; REAL_MUL_RZERO; REAL_INV_0] THEN | |
ASM_MESON_TAC[DIST_EQ_0]);; | |
let TAN_OPPOSITE_OVER_ADJACENT = prove | |
(`!A B C:real^N. | |
orthogonal (A - B) (C - B) | |
==> tan(angle(B,A,C)) = dist(C,B) / dist(A,B)`, | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `A:real^N = B` THENL | |
[ASM_REWRITE_TAC[angle; VECTOR_SUB_REFL; vector_angle] THEN | |
REWRITE_TAC[tan; COS_PI2; DIST_REFL; real_div; REAL_INV_0; REAL_MUL_RZERO]; | |
ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; DIST_POS_LT] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
ASM_SIMP_TAC[TAN_OPPOSITE_ADJACENT]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The law of cosines. *) | |
(* ------------------------------------------------------------------------- *) | |
let LAW_OF_COSINES = prove | |
(`!A B C:real^N. | |
dist(B,C) pow 2 = (dist(A,B) pow 2 + dist(A,C) pow 2) - | |
&2 * dist(A,B) * dist(A,C) * cos(angle(B,A,C))`, | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC[angle; ONCE_REWRITE_RULE[NORM_SUB] dist; GSYM VECTOR_ANGLE; | |
NORM_POW_2] THEN | |
VECTOR_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* The law of sines. *) | |
(* ------------------------------------------------------------------------- *) | |
let LAW_OF_SINES = prove | |
(`!A B C:real^N. | |
sin(angle(A,B,C)) * dist(B,C) = sin(angle(B,A,C)) * dist(A,C)`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_POW_EQ THEN EXISTS_TAC `2` THEN | |
SIMP_TAC[SIN_ANGLE_POS; DIST_POS_LE; REAL_LE_MUL; ARITH] THEN | |
REWRITE_TAC[REAL_POW_MUL; MATCH_MP | |
(REAL_ARITH `x + y = &1 ==> x = &1 - y`) (SPEC_ALL SIN_CIRCLE)] THEN | |
ASM_CASES_TAC `A:real^N = B` THEN ASM_REWRITE_TAC[ANGLE_REFL; COS_PI2] THEN | |
RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM VECTOR_SUB_EQ]) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM NORM_EQ_0]) THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_RING | |
`~(a = &0) ==> a pow 2 * x = a pow 2 * y ==> x = y`)) THEN | |
ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[GSYM dist] THEN | |
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [DIST_SYM] THEN | |
REWRITE_TAC[REAL_RING | |
`a * (&1 - x) * b = c * (&1 - y) * d <=> | |
a * b - a * b * x = c * d - c * d * y`] THEN | |
REWRITE_TAC[GSYM REAL_POW_MUL; GSYM ANGLE] THEN | |
REWRITE_TAC[REAL_POW_MUL; dist; NORM_POW_2] THEN | |
REWRITE_TAC[DOT_LSUB; DOT_RSUB; DOT_SYM] THEN CONV_TAC REAL_RING);; | |
(* ------------------------------------------------------------------------- *) | |
(* The sum of the angles of a triangle. *) | |
(* ------------------------------------------------------------------------- *) | |
let TRIANGLE_ANGLE_SUM_LEMMA = prove | |
(`!A B C:real^N. ~(A = B) /\ ~(A = C) /\ ~(B = C) | |
==> cos(angle(B,A,C) + angle(A,B,C) + angle(B,C,A)) = -- &1`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN | |
REWRITE_TAC[GSYM NORM_EQ_0] THEN | |
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] LAW_OF_COSINES) THEN | |
MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] LAW_OF_COSINES) THEN | |
MP_TAC(ISPECL [`C:real^N`; `B:real^N`; `A:real^N`] LAW_OF_COSINES) THEN | |
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] LAW_OF_SINES) THEN | |
MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] LAW_OF_SINES) THEN | |
MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `A:real^N`] LAW_OF_SINES) THEN | |
REWRITE_TAC[COS_ADD; SIN_ADD; dist; NORM_SUB] THEN | |
MAP_EVERY (fun t -> MP_TAC(SPEC t SIN_CIRCLE)) | |
[`angle(B:real^N,A,C)`; `angle(A:real^N,B,C)`; `angle(B:real^N,C,A)`] THEN | |
REWRITE_TAC[COS_ADD; SIN_ADD; ANGLE_SYM] THEN CONV_TAC REAL_RING);; | |
let COS_MINUS1_LEMMA = prove | |
(`!x. cos(x) = -- &1 /\ &0 <= x /\ x < &3 * pi ==> x = pi`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `?n. integer n /\ x = n * pi` | |
(X_CHOOSE_THEN `nn:real` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN | |
REWRITE_TAC[GSYM SIN_EQ_0] THENL | |
[MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC REAL_RING; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `?n. nn = &n` (X_CHOOSE_THEN `n:num` SUBST_ALL_TAC) THENL | |
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_MUL_POS_LE]) THEN | |
SIMP_TAC[PI_POS; REAL_ARITH `&0 < p ==> ~(p < &0) /\ ~(p = &0)`] THEN | |
ASM_MESON_TAC[INTEGER_POS; REAL_LT_LE]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_RING `n = &1 ==> n * p = p`) THEN | |
REWRITE_TAC[REAL_OF_NUM_EQ] THEN | |
MATCH_MP_TAC(ARITH_RULE `n < 3 /\ ~(n = 0) /\ ~(n = 2) ==> n = 1`) THEN | |
RULE_ASSUM_TAC(SIMP_RULE[REAL_LT_RMUL_EQ; PI_POS; REAL_OF_NUM_LT]) THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN SIMP_TAC[COS_0; REAL_MUL_LZERO; COS_NPI] THEN | |
REAL_ARITH_TAC);; | |
let TRIANGLE_ANGLE_SUM = prove | |
(`!A B C:real^N. ~(A = B /\ B = C /\ A = C) | |
==> angle(B,A,C) + angle(A,B,C) + angle(B,C,A) = pi`, | |
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC | |
[`A:real^N = B`; `B:real^N = C`; `A:real^N = C`] THEN | |
ASM_SIMP_TAC[ANGLE_REFL_MID; ANGLE_REFL; REAL_HALF; REAL_ADD_RID] THEN | |
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[REAL_ADD_LID; REAL_HALF] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC COS_MINUS1_LEMMA THEN | |
ASM_SIMP_TAC[TRIANGLE_ANGLE_SUM_LEMMA; REAL_LE_ADD; ANGLE_RANGE] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&0 <= x /\ x <= p /\ &0 <= y /\ y <= p /\ &0 <= z /\ z <= p /\ | |
~(x = p /\ y = p /\ z = p) | |
==> x + y + z < &3 * p`) THEN | |
ASM_SIMP_TAC[ANGLE_RANGE] THEN REPEAT STRIP_TAC THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ANGLE_EQ_PI_DIST])) THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV | |
[GSYM VECTOR_SUB_EQ])) THEN | |
REWRITE_TAC[GSYM NORM_EQ_0; dist; NORM_SUB] THEN REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* A few more lemmas about angles. *) | |
(* ------------------------------------------------------------------------- *) | |
let ANGLE_EQ_PI_OTHERS = prove | |
(`!A B C:real^N. | |
angle(A,B,C) = pi | |
==> angle(B,C,A) = &0 /\ angle(A,C,B) = &0 /\ | |
angle(B,A,C) = &0 /\ angle(C,A,B) = &0`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [ANGLE_EQ_PI_DIST]) THEN | |
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] TRIANGLE_ANGLE_SUM) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH | |
`x + p + y = p ==> &0 <= x /\ &0 <= y ==> x = &0 /\ y = &0`)) THEN | |
SIMP_TAC[ANGLE_RANGE; ANGLE_SYM]);; | |
let ANGLE_EQ_0_DIST = prove | |
(`!A B C:real^N. angle(A,B,C) = &0 <=> | |
~(A = B) /\ ~(C = B) /\ | |
(dist(A,B) = dist(A,C) + dist(C,B) \/ | |
dist(B,C) = dist(A,C) + dist(A,B))`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `A:real^N = B` THENL | |
[ASM_REWRITE_TAC[angle; VECTOR_ANGLE_EQ_0; VECTOR_SUB_EQ]; ALL_TAC] THEN | |
ASM_CASES_TAC `B:real^N = C` THENL | |
[ASM_REWRITE_TAC[angle; VECTOR_ANGLE_EQ_0; VECTOR_SUB_EQ]; ALL_TAC] THEN | |
ASM_CASES_TAC `A:real^N = C` THENL | |
[ASM_SIMP_TAC[ANGLE_REFL_MID; DIST_REFL; REAL_ADD_LID]; ALL_TAC] THEN | |
EQ_TAC THENL | |
[ALL_TAC; | |
STRIP_TAC THENL | |
[MP_TAC(ISPECL[`A:real^N`; `C:real^N`; `B:real^N`] ANGLE_EQ_PI_DIST); | |
MP_TAC(ISPECL[`B:real^N`; `A:real^N`; `C:real^N`] ANGLE_EQ_PI_DIST)] THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[DIST_SYM; REAL_ADD_AC] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP ANGLE_EQ_PI_OTHERS) THEN SIMP_TAC[]] THEN | |
ASM_REWRITE_TAC[angle; VECTOR_ANGLE_EQ_0; VECTOR_SUB_EQ] THEN | |
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC | |
(ISPECL [`norm(A - B:real^N)`; `norm(C - B:real^N)`] | |
REAL_LT_TOTAL) | |
THENL | |
[ASM_REWRITE_TAC[VECTOR_MUL_LCANCEL; NORM_EQ_0; VECTOR_SUB_EQ; | |
VECTOR_ARITH `c - b:real^N = a - b <=> a = c`]; | |
ONCE_REWRITE_TAC[VECTOR_ARITH | |
`norm(A - B) % (C - B) = norm(C - B) % (A - B) <=> | |
(norm(C - B) - norm(A - B)) % (A - B) = norm(A - B) % (C - A)`]; | |
ONCE_REWRITE_TAC[VECTOR_ARITH | |
`norm(A - B) % (C - B) = norm(C - B) % (A - B) <=> | |
(norm(A - B) - norm(C - B)) % (C - B) = norm(C - B) % (A - C)`]] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ] NORM_CROSS_MULTIPLY)) THEN | |
ASM_SIMP_TAC[REAL_SUB_LT; NORM_POS_LT; VECTOR_SUB_EQ] THEN | |
SIMP_TAC[GSYM DIST_TRIANGLE_EQ] THEN SIMP_TAC[DIST_SYM]);; | |
let ANGLE_EQ_0_DIST_ABS = prove | |
(`!A B C:real^N. angle(A,B,C) = &0 <=> | |
~(A = B) /\ ~(C = B) /\ | |
dist(A,C) = abs(dist(A,B) - dist(C,B))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[ANGLE_EQ_0_DIST] THEN | |
AP_TERM_TAC THEN AP_TERM_TAC THEN | |
MP_TAC(ISPECL [`A:real^N`; `C:real^N`] DIST_POS_LE) THEN | |
REWRITE_TAC[DIST_SYM] THEN REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some rules for congruent triangles (not necessarily in the same real^N). *) | |
(* ------------------------------------------------------------------------- *) | |
let CONGRUENT_TRIANGLES_SSS = prove | |
(`!A B C:real^M A' B' C':real^N. | |
dist(A,B) = dist(A',B') /\ | |
dist(B,C) = dist(B',C') /\ | |
dist(C,A) = dist(C',A') | |
==> angle(A,B,C) = angle(A',B',C')`, | |
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC | |
[`dist(A':real^N,B') = &0`; `dist(B':real^N,C') = &0`] THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[DIST_EQ_0]) THEN | |
ASM_SIMP_TAC[ANGLE_REFL_MID; ANGLE_REFL] THEN | |
ONCE_REWRITE_TAC[GSYM COS_ANGLE_EQ] THEN | |
MP_TAC(ISPECL [`B:real^M`; `A:real^M`; `C:real^M`] LAW_OF_COSINES) THEN | |
MP_TAC(ISPECL [`B':real^N`; `A':real^N`; `C':real^N`] LAW_OF_COSINES) THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[GSYM DIST_EQ_0; DIST_SYM] THEN | |
CONV_TAC REAL_FIELD);; | |
let CONGRUENT_TRIANGLES_SAS = prove | |
(`!A B C:real^M A' B' C':real^N. | |
dist(A,B) = dist(A',B') /\ | |
angle(A,B,C) = angle(A',B',C') /\ | |
dist(B,C) = dist(B',C') | |
==> dist(A,C) = dist(A',C')`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[DIST_EQ] THEN | |
MP_TAC(ISPECL [`B:real^M`; `A:real^M`; `C:real^M`] LAW_OF_COSINES) THEN | |
MP_TAC(ISPECL [`B':real^N`; `A':real^N`; `C':real^N`] LAW_OF_COSINES) THEN | |
REPEAT(DISCH_THEN SUBST1_TAC) THEN | |
REPEAT BINOP_TAC THEN ASM_MESON_TAC[DIST_SYM]);; | |
let CONGRUENT_TRIANGLES_AAS = prove | |
(`!A B C:real^M A' B' C':real^N. | |
angle(A,B,C) = angle(A',B',C') /\ | |
angle(B,C,A) = angle(B',C',A') /\ | |
dist(A,B) = dist(A',B') /\ | |
~(collinear {A,B,C}) | |
==> dist(A,C) = dist(A',C') /\ dist(B,C) = dist(B',C')`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^M = B` THENL | |
[FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[INSERT_AC; COLLINEAR_2]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN SUBGOAL_THEN `~(A':real^N = B')` ASSUME_TAC THENL | |
[ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN | |
SUBGOAL_THEN `angle(C:real^M,A,B) = angle(C':real^N,A',B')` ASSUME_TAC THENL | |
[MP_TAC(ISPECL [`A:real^M`; `B:real^M`; `C:real^M`] TRIANGLE_ANGLE_SUM) THEN | |
MP_TAC(ISPECL [`A':real^N`; `B':real^N`; `C':real^N`] | |
TRIANGLE_ANGLE_SUM) THEN ASM_REWRITE_TAC[IMP_IMP] THEN | |
REWRITE_TAC[ANGLE_SYM] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL | |
[MP_TAC(ISPECL [`C:real^M`; `B:real^M`; `A:real^M`] LAW_OF_SINES) THEN | |
MP_TAC(ISPECL [`C':real^N`; `B':real^N`; `A':real^N`] LAW_OF_SINES) THEN | |
SUBGOAL_THEN `~(sin(angle(B':real^N,C',A')) = &0)` MP_TAC THENL | |
[ASM_MESON_TAC[COLLINEAR_SIN_ANGLE_IMP; INSERT_AC]; | |
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ANGLE_SYM; DIST_SYM] THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[ANGLE_SYM; DIST_SYM] THEN | |
CONV_TAC REAL_FIELD]; | |
ASM_MESON_TAC[CONGRUENT_TRIANGLES_SAS; DIST_SYM; ANGLE_SYM]]);; | |
let CONGRUENT_TRIANGLES_ASA = prove | |
(`!A B C:real^M A' B' C':real^N. | |
angle(A,B,C) = angle(A',B',C') /\ | |
dist(A,B) = dist(A',B') /\ | |
angle(B,A,C) = angle(B',A',C') /\ | |
~(collinear {A,B,C}) | |
==> dist(A,C) = dist(A',C')`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^M = B` THENL | |
[FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[INSERT_AC; COLLINEAR_2]; | |
ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN SUBGOAL_THEN `~(A':real^N = B')` ASSUME_TAC THENL | |
[ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN | |
MP_TAC(ISPECL [`A:real^M`; `B:real^M`; `C:real^M`] TRIANGLE_ANGLE_SUM) THEN | |
MP_TAC(ISPECL [`A':real^N`; `B':real^N`; `C':real^N`] | |
TRIANGLE_ANGLE_SUM) THEN | |
ASM_REWRITE_TAC[IMP_IMP] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH | |
`a + b + x = pi /\ a + b + y = pi ==> x = y`)) THEN | |
ASM_MESON_TAC[CONGRUENT_TRIANGLES_AAS; DIST_SYM; ANGLE_SYM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Full versions where we deduce everything from the conditions. *) | |
(* ------------------------------------------------------------------------- *) | |
let CONGRUENT_TRIANGLES_SSS_FULL = prove | |
(`!A B C:real^M A' B' C':real^N. | |
dist(A,B) = dist(A',B') /\ | |
dist(B,C) = dist(B',C') /\ | |
dist(C,A) = dist(C',A') | |
==> dist(A,B) = dist(A',B') /\ | |
dist(B,C) = dist(B',C') /\ | |
dist(C,A) = dist(C',A') /\ | |
angle(A,B,C) = angle(A',B',C') /\ | |
angle(B,C,A) = angle(B',C',A') /\ | |
angle(C,A,B) = angle(C',A',B')`, | |
MESON_TAC[CONGRUENT_TRIANGLES_SSS; DIST_SYM; ANGLE_SYM]);; | |
let CONGRUENT_TRIANGLES_SAS_FULL = prove | |
(`!A B C:real^M A' B' C':real^N. | |
dist(A,B) = dist(A',B') /\ | |
angle(A,B,C) = angle(A',B',C') /\ | |
dist(B,C) = dist(B',C') | |
==> dist(A,B) = dist(A',B') /\ | |
dist(B,C) = dist(B',C') /\ | |
dist(C,A) = dist(C',A') /\ | |
angle(A,B,C) = angle(A',B',C') /\ | |
angle(B,C,A) = angle(B',C',A') /\ | |
angle(C,A,B) = angle(C',A',B')`, | |
MESON_TAC[CONGRUENT_TRIANGLES_SSS; DIST_SYM; ANGLE_SYM; | |
CONGRUENT_TRIANGLES_SAS]);; | |
let CONGRUENT_TRIANGLES_AAS_FULL = prove | |
(`!A B C:real^M A' B' C':real^N. | |
angle(A,B,C) = angle(A',B',C') /\ | |
angle(B,C,A) = angle(B',C',A') /\ | |
dist(A,B) = dist(A',B') /\ | |
~(collinear {A,B,C}) | |
==> dist(A,B) = dist(A',B') /\ | |
dist(B,C) = dist(B',C') /\ | |
dist(C,A) = dist(C',A') /\ | |
angle(A,B,C) = angle(A',B',C') /\ | |
angle(B,C,A) = angle(B',C',A') /\ | |
angle(C,A,B) = angle(C',A',B')`, | |
MESON_TAC[CONGRUENT_TRIANGLES_SSS; DIST_SYM; ANGLE_SYM; | |
CONGRUENT_TRIANGLES_AAS]);; | |
let CONGRUENT_TRIANGLES_ASA_FULL = prove | |
(`!A B C:real^M A' B' C':real^N. | |
angle(A,B,C) = angle(A',B',C') /\ | |
dist(A,B) = dist(A',B') /\ | |
angle(B,A,C) = angle(B',A',C') /\ | |
~(collinear {A,B,C}) | |
==> dist(A,B) = dist(A',B') /\ | |
dist(B,C) = dist(B',C') /\ | |
dist(C,A) = dist(C',A') /\ | |
angle(A,B,C) = angle(A',B',C') /\ | |
angle(B,C,A) = angle(B',C',A') /\ | |
angle(C,A,B) = angle(C',A',B')`, | |
MESON_TAC[CONGRUENT_TRIANGLES_ASA; CONGRUENT_TRIANGLES_SAS_FULL; | |
DIST_SYM; ANGLE_SYM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Between-ness. *) | |
(* ------------------------------------------------------------------------- *) | |
let ANGLE_BETWEEN = prove | |
(`!a b x. angle(a,x,b) = pi <=> ~(x = a) /\ ~(x = b) /\ between x (a,b)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[between; ANGLE_EQ_PI_DIST] THEN | |
REWRITE_TAC[EQ_SYM_EQ]);; | |
let BETWEEN_ANGLE = prove | |
(`!a b x. between x (a,b) <=> x = a \/ x = b \/ angle(a,x,b) = pi`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[ANGLE_BETWEEN] THEN | |
MESON_TAC[BETWEEN_REFL]);; | |
let ANGLES_ALONG_LINE = prove | |
(`!A B C D:real^N. | |
~(C = A) /\ ~(C = B) /\ between C (A,B) | |
==> angle(A,C,D) + angle(B,C,D) = pi`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM ANGLE_BETWEEN] THEN | |
DISCH_THEN(SUBST1_TAC o MATCH_MP ANGLE_EQ_PI_LEFT) THEN REAL_ARITH_TAC);; | |
let ANGLES_ADD_BETWEEN = prove | |
(`!A B C D:real^N. | |
between C (A,B) /\ ~(D = A) /\ ~(D = B) | |
==> angle(A,D,C) + angle(C,D,B) = angle(A,D,B)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^N = B` THENL | |
[ASM_SIMP_TAC[BETWEEN_REFL_EQ] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ADD_LID]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `C:real^N = A` THEN | |
ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ADD_LID] THEN | |
ASM_CASES_TAC `C:real^N = B` THEN | |
ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ADD_RID] THEN | |
STRIP_TAC THEN | |
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`; `D:real^N`] | |
ANGLES_ALONG_LINE) THEN | |
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN | |
MP_TAC(ISPECL [`A:real^N`; `C:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN | |
MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `angle(C:real^N,A,D) = angle(B,A,D) /\ | |
angle(A,B,D) = angle(C,B,D)` | |
(CONJUNCTS_THEN SUBST1_TAC) | |
THENL [ALL_TAC; REWRITE_TAC[ANGLE_SYM] THEN REAL_ARITH_TAC] THEN | |
CONJ_TAC THEN MATCH_MP_TAC ANGLE_EQ_0_RIGHT THEN | |
ASM_MESON_TAC[ANGLE_EQ_PI_OTHERS; BETWEEN_ANGLE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Distance from a point to a line expressed with angles. *) | |
(* ------------------------------------------------------------------------- *) | |
let SETDIST_POINT_LINE = prove | |
(`!x y z:real^N. | |
setdist({x},affine hull {y,z}) = dist(x,y) * sin(angle(x,y,z))`, | |
REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `y:real^N` THEN | |
REPEAT GEN_TAC THEN | |
SIMP_TAC[SETDIST_CLOSEST_POINT; CLOSED_AFFINE_HULL; | |
AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN | |
ABBREV_TAC `y = closest_point (affine hull {vec 0, z}) (x:real^N)` THEN | |
MP_TAC(ISPECL [`vec 0:real^N`; `y:real^N`; `x:real^N`] | |
SIN_OPPOSITE_HYPOTENUSE) THEN | |
MP_TAC(ISPECL [`affine hull {vec 0:real^N, z}`; `x:real^N`; `vec 0:real^N`] | |
CLOSEST_POINT_AFFINE_ORTHOGONAL) THEN | |
ASM_SIMP_TAC[HULL_INC; IN_INSERT; AFFINE_AFFINE_HULL; | |
AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN | |
DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(SUBST1_TAC o SYM) THEN | |
REWRITE_TAC[DIST_SYM] THEN AP_TERM_TAC THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [ANGLE_SYM] THEN | |
MP_TAC(ISPECL [`affine hull {vec 0:real^N, z}`; `x:real^N`] | |
CLOSEST_POINT_IN_SET) THEN | |
ASM_SIMP_TAC[CLOSED_AFFINE_HULL; AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN | |
SIMP_TAC[AFFINE_HULL_2; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN | |
MAP_EVERY X_GEN_TAC [`b:real`; `a:real`] THEN STRIP_TAC THEN | |
MP_TAC(ISPECL [`affine hull {vec 0:real^N, z}`; `x:real^N`; `z:real^N`] | |
CLOSEST_POINT_AFFINE_ORTHOGONAL) THEN | |
ASM_SIMP_TAC[HULL_INC; IN_INSERT; AFFINE_AFFINE_HULL; | |
AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN | |
REWRITE_TAC[angle; VECTOR_SUB_RZERO; SIN_VECTOR_ANGLE_LMUL] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_SUB_RZERO] THEN | |
SIMP_TAC[ORTHOGONAL_VECTOR_ANGLE; SIN_PI2]);; | |
(* ------------------------------------------------------------------------- *) | |
(* A standard formula for the area of a triangle. *) | |
(* ------------------------------------------------------------------------- *) | |
let AREA_TRIANGLE_SIN = prove | |
(`!a b c:real^2. | |
measure(convex hull {a,b,c}) = | |
(dist(a,b) * dist(a,c) * sin(angle(b,a,c))) / &2`, | |
GEOM_ORIGIN_TAC `a:real^2` THEN | |
REWRITE_TAC[MEASURE_TRIANGLE; angle] THEN | |
REWRITE_TAC[VECTOR_SUB_RZERO; VEC_COMPONENT; REAL_SUB_RZERO; DIST_0] THEN | |
REPEAT GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH | |
`&0 <= y /\ abs x = abs y ==> abs x / &2 = y / &2`) THEN | |
SIMP_TAC[REAL_LE_MUL; NORM_POS_LE; SIN_VECTOR_ANGLE_POS] THEN | |
REWRITE_TAC[REAL_EQ_SQUARE_ABS] THEN | |
ASM_CASES_TAC `b:real^2 = vec 0` THENL | |
[ASM_REWRITE_TAC[VEC_COMPONENT; NORM_0] THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_CASES_TAC `c:real^2 = vec 0` THENL | |
[ASM_REWRITE_TAC[VEC_COMPONENT; NORM_0] THEN REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_REWRITE_TAC[REAL_POW_MUL; SIN_SQUARED_VECTOR_ANGLE] THEN | |
ASM_SIMP_TAC[NORM_EQ_0; REAL_FIELD | |
`~(b = &0) /\ ~(c = &0) | |
==> b pow 2 * c pow 2 * (&1 - (d / (b * c)) pow 2) = | |
b pow 2 * c pow 2 - d pow 2`] THEN | |
REWRITE_TAC[NORM_POW_2; DOT_2] THEN CONV_TAC REAL_RING);; | |
(* ------------------------------------------------------------------------- *) | |
(* Angles satisfy the triangle law and hence vector_angle defines a metric. *) | |
(* ------------------------------------------------------------------------- *) | |
let ANGLE_TRIANGLE_LAW = prove | |
(`!p u v w:real^N. angle(u,p,w) <= angle(u,p,v) + angle(v,p,w)`, | |
let lemma0 = prove | |
(`x1 * x1 + y1 * y1 + z1 * z1 = &1 /\ x2 * x2 + y2 * y2 + z2 * z2 = &1 | |
==> (x2 * x1 - (x2 * x1 + y2 * y1 + z2 * z1)) pow 2 <= | |
(&1 - x2 pow 2) * (&1 - x1 pow 2)`, | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[REAL_ARITH | |
`(x2 * x1 - (x2 * x1 + y2 * y1 + z2 * z1)) pow 2 <= | |
(&1 - x2 pow 2) * (&1 - x1 pow 2) | |
<=> &0 <= --(y1 pow 2 + z1 pow 2) * | |
((x2 * x2 + y2 * y2 + z2 * z2) - &1) + | |
(x2 pow 2 - &1) * ((x1 * x1 + y1 * y1 + z1 * z1) - &1) + | |
(y2 * z1 - y1 * z2) pow 2`] THEN | |
ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; REAL_ADD_LID] THEN | |
REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE]) in | |
let lemma1 = prove | |
(`!p u v w:real^3. | |
norm(u - p) = &1 /\ norm(v - p) = &1 /\ norm(w - p) = &1 | |
==> angle(u,p,w) <= angle(u,p,v) + angle(v,p,w)`, | |
GEOM_ORIGIN_TAC `p:real^3` THEN | |
REWRITE_TAC[angle; VECTOR_SUB_RZERO] THEN | |
GEOM_BASIS_MULTIPLE_TAC 1 `v:real^3` THEN | |
X_GEN_TAC `vb:real` THEN | |
SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_GE_1; LE_REFL] THEN | |
SIMP_TAC[REAL_ARITH `&0 <= vb ==> (abs(vb) * &1 = &1 <=> vb = &1)`] THEN | |
DISCH_THEN(K ALL_TAC) THEN ASM_CASES_TAC `vb = &1` THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_LID] THEN POP_ASSUM(K ALL_TAC) THEN | |
REPEAT GEN_TAC THEN | |
SUBGOAL_THEN `~(basis 1:real^3 = vec 0)` ASSUME_TAC THENL | |
[ASM_SIMP_TAC[BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL]; ALL_TAC] THEN | |
MAP_EVERY ASM_CASES_TAC | |
[`u:real^3 = vec 0`; `w:real^3 = vec 0`] THEN | |
ASM_REWRITE_TAC[NORM_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH | |
`&0 <= x /\ x <= pi /\ &0 <= y /\ y <= pi /\ &0 <= z /\ z <= pi /\ | |
(&0 <= y + z /\ y + z <= pi ==> x <= y + z) | |
==> x <= y + z`) THEN | |
REWRITE_TAC[VECTOR_ANGLE_RANGE] THEN STRIP_TAC THEN | |
W(MP_TAC o PART_MATCH (rand o rand) COS_MONO_LE_EQ o snd) THEN | |
ASM_REWRITE_TAC[VECTOR_ANGLE_RANGE] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN | |
ASM_SIMP_TAC[COS_ADD; COS_VECTOR_ANGLE; VECTOR_SUB_RZERO] THEN | |
REWRITE_TAC[REAL_MUL_LID; REAL_DIV_1] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`abs(x - z) <= abs(y) /\ &0 <= y ==> x - y <= z`) THEN | |
ASM_SIMP_TAC[SIN_VECTOR_ANGLE_POS; REAL_LE_MUL; REAL_LE_SQUARE_ABS] THEN | |
ASM_REWRITE_TAC[REAL_POW_MUL; SIN_SQUARED_VECTOR_ANGLE] THEN | |
ASM_REWRITE_TAC[VECTOR_SUB_RZERO; REAL_MUL_LID; REAL_DIV_1] THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NORM_EQ_1])) THEN | |
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`u:real^3`; `w:real^3`] THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN REWRITE_TAC[FORALL_VECTOR_3] THEN | |
SIMP_TAC[DOT_BASIS; DIMINDEX_GE_1; LE_REFL; NORM_BASIS] THEN | |
REWRITE_TAC[REAL_MUL_LID; REAL_DIV_1] THEN | |
REWRITE_TAC[DOT_3; VECTOR_3] THEN SIMP_TAC[lemma0]) in | |
let lemma2 = prove | |
(`!p u v w:real^3. angle(u,p,w) <= angle(u,p,v) + angle(v,p,w)`, | |
GEOM_ORIGIN_TAC `p:real^3` THEN REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `u:real^3 = vec 0` THENL | |
[MATCH_MP_TAC(REAL_ARITH `x = pi / &2 /\ y = pi / &2 /\ &0 <= z | |
==> x <= y + z`) THEN | |
REWRITE_TAC[angle; VECTOR_ANGLE_RANGE] THEN | |
ASM_REWRITE_TAC[vector_angle; VECTOR_SUB_RZERO]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `v:real^3 = vec 0` THENL | |
[MATCH_MP_TAC(REAL_ARITH `x <= pi /\ y = pi / &2 /\ z = pi / &2 | |
==> x <= y + z`) THEN | |
REWRITE_TAC[angle; VECTOR_ANGLE_RANGE] THEN | |
ASM_REWRITE_TAC[vector_angle; VECTOR_SUB_RZERO]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `w:real^3 = vec 0` THENL | |
[MATCH_MP_TAC(REAL_ARITH `x = pi / &2 /\ &0 <= y /\ z = pi / &2 | |
==> x <= y + z`) THEN | |
REWRITE_TAC[angle; VECTOR_ANGLE_RANGE] THEN | |
ASM_REWRITE_TAC[vector_angle; VECTOR_SUB_RZERO]; | |
ALL_TAC] THEN | |
MP_TAC(ISPECL [`vec 0:real^3`; `inv(norm u) % u:real^3`; | |
`inv(norm v) % v:real^3`; `inv(norm w) % w:real^3`] | |
lemma1) THEN | |
ASM_SIMP_TAC[angle; VECTOR_SUB_RZERO; NORM_MUL] THEN | |
ASM_SIMP_TAC[REAL_ABS_INV; REAL_ABS_NORM; REAL_MUL_LINV; NORM_EQ_0] THEN | |
ASM_REWRITE_TAC[VECTOR_ANGLE_LMUL; VECTOR_ANGLE_RMUL] THEN | |
ASM_REWRITE_TAC[REAL_INV_EQ_0; NORM_EQ_0; REAL_LE_INV_EQ; NORM_POS_LE]) in | |
DISJ_CASES_TAC(ARITH_RULE | |
`dimindex(:3) <= dimindex(:N) \/ dimindex(:N) <= dimindex(:3)`) | |
THENL | |
[ALL_TAC; | |
FIRST_ASSUM(ACCEPT_TAC o C GEOM_DROP_DIMENSION_RULE | |
lemma2)] THEN | |
GEOM_ORIGIN_TAC `p:real^N` THEN REPEAT GEN_TAC THEN | |
SUBGOAL_THEN `subspace(span{u:real^N,v,w}) /\ | |
dim(span{u,v,w}) <= dimindex(:3) /\ | |
dimindex(:3) <= dimindex(:N)` | |
MP_TAC THENL | |
[ASM_REWRITE_TAC[SUBSPACE_SPAN; DIM_SPAN] THEN | |
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD{u:real^N,v,w}` THEN | |
SIMP_TAC[DIM_LE_CARD; FINITE_INSERT; FINITE_EMPTY] THEN | |
SIMP_TAC[DIMINDEX_3; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN | |
ARITH_TAC; | |
ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP ISOMETRY_UNIV_SUPERSET_SUBSPACE) THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:real^3->real^N` STRIP_ASSUME_TAC) THEN | |
FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP LINEAR_0) THEN | |
SUBGOAL_THEN `{u:real^N,v,w} SUBSET IMAGE f (:real^3)` MP_TAC THENL | |
[ASM_MESON_TAC[SUBSET; SPAN_INC]; ALL_TAC] THEN | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_IMAGE; IN_UNIV] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
MP_TAC(end_itlist CONJ | |
(mapfilter (ISPEC `f:real^3->real^N`) (!invariant_under_linear))) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN | |
REWRITE_TAC[lemma2]);; | |
let VECTOR_ANGLE_TRIANGLE_LAW = prove | |
(`!u v w:real^N. vector_angle u w <= vector_angle u v + vector_angle v w`, | |
REWRITE_TAC[VECTOR_ANGLE_ANGLE; ANGLE_TRIANGLE_LAW]);; | |